Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 233–248Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems

High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems

  • Jintai Ding1,
  • Lei Hu2,
  • Xuyun Nie2,
  • Jianyu Li2 &
  • …
  • John Wagner1 
  • Conference paper
  • 2037 Accesses

  • 26 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

In the CT-track of the 2006 RSA conference, a new multivariate public key cryptosystem, which is called the Medium Field Equation (MFE) multivariate public key cryptosystem, is proposed by Wang, Yang, Hu and Lai. We use the second order linearization equation attack method by Patarin to break MFE. Given a ciphertext, we can derive the plaintext within 223 \(\mathbb {F}_{2^{16}}\)-multiplications, after performing once for any given public key a computation of complexity less than 252. We also propose a high order linearization equation (HOLE) attack on multivariate public key cryptosystems, which is a further generalization of the (first and second order) linearization equation (LE). This method can be used to attack extensions of the current MFE.

Keywords

  • multivariate public key cryptosystem
  • quadratic polynomial
  • algebraic cryptanalysis
  • high order linearization equation

Chapter PDF

Download to read the full chapter text

References

  1. Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A fast and secure implementation of Sflash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, Springer, Heidelberg (2004)

    Google Scholar 

  3. Bardet, M., Fauge, J-C., Salvy, B., Yang, B-Y.: Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems. In: MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry, Porto Conte, Alghero, Sardinia, Italy, May 27th - June 1st (2005)

    Google Scholar 

  4. Nicolas, T.: Courtois The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)

    Google Scholar 

  5. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Chen, J., Moh, T.: On the Goubin-Courtois attack on TTM. Cryptology ePrint Archive, 72 (2001), http://eprint.iacr.org/2001/072

  8. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)

    Google Scholar 

  10. Ding, J., Gower, J.: Inoculating Multivariate Schemes Against Differential Attacks. Accepted for PKC-2006, IACR eprint 2005/255 (2005)

    Google Scholar 

  11. Ding, J., Schmidt, D.S.: A common defect of the TTM cryptosystem. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 68–78. Springer, Heidelberg (2003), http://eprint.iacr.org

    Google Scholar 

  12. Ding, J., Schmidt, D.S.: The new TTM implementation is not secure. In: Niederreiter, H., Feng, K.Q., Xing, C.P. (eds.) Proceedings of International Workshop on Coding, Cryptography and Combinatorics (CCC 2003), pp. 106–121 (2003)

    Google Scholar 

  13. Ding, J., Schmidt, D.S.: Cryptanalysis of HFEV and the internal perturbation of HFE. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)

    Google Scholar 

  14. Ding, J., Schmidt, D.S.: Rainbow, a new multivariate public key signature scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

    Google Scholar 

  15. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). Journal of Pure and Applied Algebra 139(1–3), 61–88 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)

    Google Scholar 

  17. Goubin, L., Courtois, N.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  18. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Google Scholar 

  19. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Google Scholar 

  20. Moh, T.T.: A fast public key system with signature and master key functions. In: Lecture Notes at EE department of Stanford University (May 1999), http://www.usdsi.com/ttm.html

  21. Moh, T., Chen, J.M., Yang, B.: Building Instances of TTM Immune to the Goubin-Courtois Attack and the Ding-Schmidt Attack. IACR eprint 2004/168 (2004), http://eprint.iacr.org

  22. NESSIE. European project IST-1999-12324 on New European Schemes for Signature, Integrity and Encryption. http://www.cryptonessie.org

  23. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  24. Patarin, J.: Hidden field equations (HFE) and isomorphism of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  25. Patarin, J.: The oil and vinegar signature scheme. In: Dagstuhl Workshop on Cryptography, September 1997 (1997)

    Google Scholar 

  26. Patarin, J., Courtois, N., Goubin, L.: Flash, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  27. Patarin, J., Goubin, L., Courtois, N.: \(C_{-+}^*\) and HM: variations around two schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  28. PQCrypto 2006: International Workshop on Post-Quantum Cryptography (2006), http://postquantum.cr.yp.to/

  29. Rivest, R., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public key cryptosystems. ACM 21(2), 120–126 (1978)

    Google Scholar 

  30. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Wang, L.-C., Hu, Y.-H., Lai, F., Chou, C.-Y., Yang, B.-Y.: Tractable Rational Map Signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)

    Google Scholar 

  32. Wang, L.-C., Yang, B.-y., Hu, Y.-H., Lai, F.: A Medium-Field Multivariate Public key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  33. Yang, B., Chen, J.: Building Secure Tame-like Multivariate Public key Cryptosystems–The New TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical Sciences, University of Cincinnati, Fachbereich Informatik, Technische Universität Darmstadt, Cincinnati, OH, 45220, USA

    Jintai Ding & John Wagner

  2. State Key Laboratory of Information Security, Graduate School of Chinese Academy of Sciences, Beijing 100049, China

    Lei Hu, Xuyun Nie & Jianyu Li

Authors
  1. Jintai Ding
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Lei Hu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Xuyun Nie
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jianyu Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. John Wagner
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ding, J., Hu, L., Nie, X., Li, J., Wagner, J. (2007). High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_16

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature