Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 217–232Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Improved On-Line/Off-Line Threshold Signatures

Improved On-Line/Off-Line Threshold Signatures

  • Emmanuel Bresson1,
  • Dario Catalano2 &
  • Rosario Gennaro3 
  • Conference paper
  • 1999 Accesses

  • 19 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

At PKC 2006 Crutchfield, Molnar, Turner and Wagner proposed a generic threshold version of on-line/off-line signature schemes based on the “hash-sign-switch” paradigm introduced by Shamir and Tauman. Such a paradigm strongly relies on chameleon hash functions which are collision-resistant functions, with a secret trapdoor which actually allows to find arbitrary collisions efficiently. The “hash-sign-switch” paradigm works as follows. In the off-line phase, the signer hashes and signs a random message s. When, during the on-line phase, he is given a message m to sign the signer uses its knowledge of the hash trapdoor to find a second preimage and “switches” m with the random s. As shown by Crutchfield et al. adapting this paradigm to the threshold setting is not trivial. The solution they propose introduces additional computational assumptions which turn out to be implied by the so-called one-more discrete logarithm assumption.

In this paper we present an alternative solution to the problem. As in the previous result by Crutchfield et al., our construction is generic and can be based on any threshold signature scheme, combined with a chameleon hash function based on discrete log. However we show that, by appropriately modifying the chameleon function, our scheme can be proven secure based only on the traditional discrete logarithm assumption. While this produces a slight increase in the cost of the off-line phase, the efficiency of the on-line stage (the most important when optimizing signature computation) is unchanged. In other words the efficiency is essentially preserved. Finally, we show how to achieve robustness for our scheme. Compared to the work by Crutchfield et al., our main solution tolerates at most \({\left\lceil n/4 \right\rceil}\) (arbitrarily) malicious players instead of \(\left\lceil n/3 \right\rceil\) however we stress that we do not rely on random oracles in our proofs. Moreover we briefly present a variant which can achieve robustness in the presence of \(\left\lceil n/3 \right\rceil\) malicious players.

Keywords

  • Signature Scheme
  • Random Oracle
  • Digital Signature Scheme
  • Real Execution
  • Threshold Signature Scheme

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Bar-Ilan, J., Beaver, D.: Non cryptographic fault tolerant computing in a constant number of rounds of interaction. In: Proceedings of the ACM Symposium on Principles of Distributed Computation, pp. 201–209. ACM Press, New York (1989)

    Google Scholar 

  2. Ben-or, M., Goldwasser, S., Widgerson, A.: Completeness Theorems for non-cryptographic fault tolerant distributed computation. In: Proc. of 20th Annual Symposium on Theory of Computing (1988)

    Google Scholar 

  3. Berlekamp, E., Welch, L.: Error correction of algebraic block codes. US Patent 4,633,470

    Google Scholar 

  4. Crutchfield, C., Molnar, D., Turner, D., Wagner, D.: Generic On-Line/Off-Line Threshold Signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 58–74. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Damgård, I., Dupont, K.: Efficient Threshold RSA Signatures with General Moduli and No Extra Assumptions. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 346–361. Springer, Heidelberg (2005)

    Google Scholar 

  6. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  7. Di Raimondo, M., Gennaro, R.: Provably Secure Threshold Password-Authenticated Key Exchange. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  8. Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line Digital Signatures. J. Cryptology 9(1), 35–67 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Feldman, P.: A Practical Scheme for Non-Interactive Verifiable Secret Sharing. In: Proc. 28th FOCS, pp. 427–437 (1987)

    Google Scholar 

  10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Generation for Discrete-Log Public-Key Cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

    Google Scholar 

  11. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and Efficient Sharing of RSA Functions. J. Cryptology 13(2), 273–300 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signatures. Inf. Comput. 164(1), 54–84 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multi-party computations with applications to threshold cryptography. In: Proc. 17th ACM Symposium on Principle of Distributed Computing, ACM Press, New York (1998)

    Google Scholar 

  14. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen message attacks. SIAM J. on Computing 17(2), 281–308 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Krawczyk, H., Rabin, T.: Chameleon Signatures. In: 2000 NDSS Symposium, pp. 143–154 (2000)

    Google Scholar 

  16. National Institute for Standards and Technology. Digital Signature Standard (DSS). Technical Report 169, August 30 (1991)

    Google Scholar 

  17. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An architecture for GlobalScale Persistent Storage. In: 2000 ACM Architectural Support for Programming Languages and Operating Systems Conference, ACM Press, New York (2000)

    Google Scholar 

  18. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  19. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.: Pond: The OceanStore prototype. In: 2003 USENIX Conference on File and Storage Technologies (2003)

    Google Scholar 

  20. Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Shamir, A., Tauman, Y.: Improved On-line/Off-line Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  22. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. DCSSI Crypto Lab, 51 bd de La Tour-Maubourg, 75700 PARIS 07 SP, France

    Emmanuel Bresson

  2. Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy

    Dario Catalano

  3. I.B.M. T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598,  

    Rosario Gennaro

Authors
  1. Emmanuel Bresson
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Dario Catalano
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Rosario Gennaro
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bresson, E., Catalano, D., Gennaro, R. (2007). Improved On-Line/Off-Line Threshold Signatures. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_15

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature