Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 150–165Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Knowledge-Binding Commitments with Applications in Time-Stamping

Knowledge-Binding Commitments with Applications in Time-Stamping

  • Ahto Buldas1,2,3 &
  • Sven Laur4 
  • Conference paper
  • 1977 Accesses

  • 8 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

We prove in a non-black-box way that every bounded list and set commitment scheme is knowledge-binding. This is a new and rather strong security condition, which makes the security definitions for time-stamping much more natural compared to the previous definitions, which assume unpredictability of adversaries. As a direct consequence, list and set commitment schemes with partial opening property are sufficient for secure time-stamping if the number of elements has an explicit upper bound N. On the other hand, white-box reductions are in a sense strictly weaker than black-box reductions. Therefore, we also extend and generalize the previously known reductions. The corresponding new reductions are \(\Theta(\sqrt{N})\) times more efficient, which is important for global-scale time-stamping schemes where N is very large.

Keywords

  • Hash Function
  • Commitment Scheme
  • Coin Toss
  • Security Guarantee
  • Random Coin

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

    Google Scholar 

  2. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of digital time-stamping. In: Sequences II: Methods in Communication, Security, and Computer Science, pp. 329–334. Springer, New York (1993)

    Google Scholar 

  3. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)

    Google Scholar 

  4. Blum, M.: Coin flipping by telephone: a protocol for solving impossible problems. In: Proc. IEEE Spring Comp. Conf., pp. 133–137. IEEE, Los Alamitos (1982)

    Google Scholar 

  5. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. JCSS 37, 156–189 (1988)

    MATH  Google Scholar 

  6. Buldas, A., Laud, P., Lipmaa, H.: Eliminating counterevidence with applications to accountable certificate management. Journal of Computer Security 10(3), 273–296 (2002)

    Google Scholar 

  7. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg (2004)

    Google Scholar 

  8. Buldas, A., Laud, P., Saarepera, M., Willemson, J.: Universally composable time-stamping schemes with audit. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 359–373. Springer, Heidelberg (2005)

    Google Scholar 

  9. Buldas, A., Laur, S.: Do broken hash functions affect the security of time-stamping schemes? In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 50–65. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  10. Damgård, I.: Commitment schemes and zero knowledge protocols. In: Damgård, I.B. (ed.) Lectures on Data Security. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  11. Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Haber, S., Stornetta, W.-S.: Secure Names for Bit-Strings. In: Proc. of ACM Conference on Computer and Communications Security, pp. 28–35. ACM Press, New York (1997)

    Google Scholar 

  13. Hagerup, T., Rüb, C.: A Guided Tour of Chernoff Bounds. Information Processing Letters 33, 305–308 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201–215. Springer, Heidelberg (1996)

    Google Scholar 

  15. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980 IEEE Symposium on Security and Privacy, pp. 122–134. IEEE Computer Society Press, Los Alamitos (1980)

    Google Scholar 

  16. Nuckolls, G., Martel, C.U., Stubblebine, S.G.: Certifying Data from Multiple Sources. In: Proc. of the DBSec 2003, pp. 47–60 (2003)

    Google Scholar 

  17. Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) Fast Software Encryption. LNCS, vol. 1039, pp. 83–87. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Cybernetica AS, Akadeemia tee 21, 12618 Tallinn, Estonia

    Ahto Buldas

  2. Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia

    Ahto Buldas

  3. University of Tartu, Liivi 2, 50409 Tartu, Estonia

    Ahto Buldas

  4. Helsinki University of Technology, Laboratory for Theoretical Computer Science, P.O.Box 5400, FI-02015 TKK, Finland

    Sven Laur

Authors
  1. Ahto Buldas
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sven Laur
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Buldas, A., Laur, S. (2007). Knowledge-Binding Commitments with Applications in Time-Stamping. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_11

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature