Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 134–149Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Multi-party Stand-Alone and Setup-Free Verifiably Committed Signatures

Multi-party Stand-Alone and Setup-Free Verifiably Committed Signatures

  • Huafei Zhu1,
  • Willy Susilo2 &
  • Yi Mu2 
  • Conference paper
  • 1922 Accesses

  • 11 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

In this paper, we first demonstrate a gap between the security of verifiably committed signatures in the two-party setting and the security of verifiably committed signatures in the multi-party setting. We then extend the state-of-the-art security model of verifiably committed signatures in the two-party setting to that of multi-party setting. Since there exists trivial setup-driven solutions to multi-party verifiably committed signatures (e.g., two-signature based solutions, we propose solutions to the multi-party stand-alone verifiably committed signatures in the setup-free model, and show that our implementation is provably secure under the joint assumption that the underlying Zhu’s signature scheme is secure against adaptive chosen-message attack, Fujisaki-Okamoto’s commitment scheme is statistically hiding and computationally binding and Paillier’s encryption is semantically secure and one-way as well as the existence of collision-free one-way hash functions.

Keywords

  • multi-party
  • setup-free
  • stand-alone
  • verifiably committed signatures

Chapter PDF

Download to read the full chapter text

References

  1. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: ACM Conference on Computer and Communications Security, pp. 7–17. ACM Press, New York (1997)

    Google Scholar 

  2. Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  4. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  5. Boudot, F., Traore, J.: Efficient Publicly Verifiable Secret Sharing Schemes with Fast or Delayed Recovery. In: Varadharajan, V., Mu, Y. (eds.) Information and Communication Security. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999)

    Google Scholar 

  6. Canetti, R.: Universally Composable Signature, Certification, and Authentication. In: CSFW 2004, p. 219 (2004)

    Google Scholar 

  7. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)

    Google Scholar 

  8. Cramer, R., Shoup, V.: Signature scheme based on the Strong RAS assumption. In: 6th ACM Conference on Computer and Communication Security, Singapore, November 1999, ACM Press, New York (1999)

    Google Scholar 

  9. Damgård, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  10. Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  11. Dodis, Y., Reyzin, L.: Breaking and Repairing Optimistic Fair Exchange from PODC 2003. In: ACM Workshop on Digital Rights Management (DRM), October 2003, ACM Press, New York (2003)

    Google Scholar 

  12. Fujisaki, E., Okamoto, T.: Statistically zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Google Scholar 

  13. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  15. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  16. Zhu, H.: New Digital Signature Scheme Attaining Immunity to Adaptive Chosen-message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)

    Google Scholar 

  17. Zhu, H.: A formal proof of Zhu’s signature scheme 2003/155, http://eprint.iacr.org/

  18. Zhu, H.: Constructing Committed Signatures from Strong-RSA Assumption in the Standard Complexity Model. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 101–114. Springer, Heidelberg (2004)

    Google Scholar 

  19. Zhu, H., Bao, F.: Stand-Alone and Setup-Free Verifiably Committed Signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  20. Zhu, H., Bao, F.: More on Stand-Alone and Setup-Free Verifiably Committed Signatures. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 148–158. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Cryptography Lab, Institute for Infocomm Research, A-star, Singapore

    Huafei Zhu

  2. School of Computer Science and Software Engineering, University of Wollongong, Australia

    Willy Susilo & Yi Mu

Authors
  1. Huafei Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Willy Susilo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yi Mu
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhu, H., Susilo, W., Mu, Y. (2007). Multi-party Stand-Alone and Setup-Free Verifiably Committed Signatures. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_10

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature