Advertisement

Characterizing Pawlak’s Approximation Operators

  • Victor W. Marek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4400)

Abstract

We investigate the operators associated with approximations in the rough set theory introduced by Pawlak in his [14,11] and extensively studied by the Rough Set community [16]. We use universal algebra techniques to establish a natural characterization of operators associated with rough sets.

Keywords

Equivalence Relation Complete Lattice Exchange Property Dual Operator Medical Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1992)Google Scholar
  2. 2.
    Doets, K.: From Logic to Logic Programming. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  3. 3.
    Düntsch, I., Orłowska, E.: Beyond Modalities: Sufficiency and Mixed Algebras. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications. Selected Papers from 4th International Seminar on Relational Methods in Logic, Algebra and Computer Science (RelMiCS’98). Studies in Fuzziness and Soft Computing, vol. 65, Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  5. 5.
    System for medical diagnoses ICD-9, http://pmiconline.com
  6. 6.
    Jonsson, B.: A Survey of Boolean Algebras with Oprators. In: Algebras and Order, pp. 239–284. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  7. 7.
    Jonsson, B., Tarski, A.: Boolean Algebras with Operators. American Journal of Mathematics 73, 891–939 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kleene, S.C.: Introduction to Metamathematics (Fifth reprint). North-Holland, Amsterdam (1967)Google Scholar
  9. 9.
    Liu, G.-L.: The axiomatization of the Rough Set Upper Approximation Operations. Fundamenta Informaticae 69, 331–342 (2006)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Marek, W., Pawlak, Z.: Information storage and retrieval systems, mathematical foundations. Theoretical Computer Science 1(4), 331–354 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Marek, W., Pawlak, Z.: Rough sets and information systems. Fundamenta Informaticae 7(1), 105–115 (1984)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Marek, V.W., Truszczyński, M.: Contributions to the Theory of Rough Sets. Fundamenta Informaticae 39(4), 389–409 (1999)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Orłowska, E., Szałas, A.: Relational Methods for Computer Science Applications. Selected Papers from 4th International Seminar on Relational Methods in Logic, Algebra and Computer Science (RelMiCS’98). Studies in Fuzziness and Soft Computing, vol. 65. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough Sets – theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  16. 16.
    Rough Sets, a journal series of Springer Lecture Notes in Computer ScienceGoogle Scholar
  17. 17.
    SanJuan, E., Iturrioz, L.: Duality and informational representability of some information algebras. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, Methodology and Applications, pp. 233–247. Physica, Heidelberg (1998)Google Scholar
  18. 18.
    SanJuan, E., Iturrioz, L.: An application of standard BAO theory to some abstract Information algebras. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications. Selected Papers from 4th International Seminar on Relational Methods in Logic, Algebra and Computer Science (RelMiCS’98). Studies in Fuzziness and Soft Computing, vol. 65, Springer, Heidelberg (2001)Google Scholar
  19. 19.
    System of medical terminology SNOMED, http://www.snomed.org
  20. 20.
    Yao, Y.-Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Yao, Y.-Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing 2, 103–120 (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Victor W. Marek
    • 1
  1. 1.Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046USA

Personalised recommendations