Feature Selection in Audiovisual Emotion Recognition Based on Rough Set Theory

  • Yong Yang
  • Guoyin Wang
  • Peijun Chen
  • Jian Zhou
  • Kun He
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4400)


Affective computing is becoming an important research area in intelligent computing technology. Furthermore, emotion recognition is one of the hot topics in affective computing. It is usually studied based on facial and audio information with technologies such as ANN, fuzzy set, SVM, HMM, etc. Many different facial and acoustic features are considered in emotion recognition by researchers. The question which features are important for emotion recognition is discussed in this paper. Rough set based reduction algorithms are taken as a method for feature selection in a proposed emotion recognition system. Our simulation experiment results show that rough set theory is effective in emotion recognition. Some useful features for audiovisual emotion recognition are discovered.


Affective computing Emotion recognition Pattern recognition Rough set Feature selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  2. 2.
    Picard, R.W.: Affective Computing: Challenges. International Journal of Human-Computer Studies 59(1), 55–64 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Picard, R.W., Vyzas, E., Healey, J.: Toward Machine Emotional Intelligence: Analysis of Affective Physiological State. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  4. 4.
    Pantci, M., Rothkrantz, L.J.M.: Toward an Affect-Sensitive Multimodal Human-Computer Interaction. Proceedings of The IEEE 91(9), 1370–1390 (2003)CrossRefGoogle Scholar
  5. 5.
    Yang, Y., et al.: An Emotion Recognition System Based on Rough Set Theory. In: Proceedings of Active Media Technology 2006, pp. 293–297 (2006)Google Scholar
  6. 6.
    Zhou, J., et al.: Speech Emotion Recognition Based on Rough Set and SVM. In: Proceeding of Fifth IEEE International Conference on Cognitive Informatics, pp. 53–61. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, P.J., et al.: Facial Expression Recognition Based on Rough Set Theory and SVM. In: Proceedings of First International Conference on Rough Sets and Knowledge Technology, pp. 772–777 (2006)Google Scholar
  8. 8.
    Yang, Y., et al.: An Audiovisual Emotion Recognition System Based on Rough Set Theory. In: Proceedings of 2006 International Conference on Artificial Intelligence, pp. 690–693 (2006)Google Scholar
  9. 9.
    De Silva, L.C., Ng, P.C.: Bimodal emotion recognition. In: Proc. Automatic Face and Gesture Recognition, pp. 332–335 (2000)Google Scholar
  10. 10.
    Chen, L.S., Huang, T.S.: Emotional expressions in audiovisual human computer interaction. In: Proc. International Conference on Multimedia and Expo (ICME), pp. 423–426 (2000)Google Scholar
  11. 11.
    Chen, C.Y., Huang, Y.K., Cook, P.: Visual/Acoustic Emotion Recognition. In: IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 1468–1471. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  12. 12.
    Almuallim, H., Dietterich, T.G.: Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence 69(1-2), 279–305 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kira, K., Rendell, L.A.: The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of the Ninth National conference on Artificial Intelligence, pp. 129–134 (1992)Google Scholar
  14. 14.
    Modrzejewski, M.: Feature Selection Using Rough Stes Theory. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 213–226. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Pawlak, Z.: On Rough Sets. Bulletin of the EATCS 24, 94–108 (1984)Google Scholar
  16. 16.
    Pawlak, Z.: Rough Classification. International Journal of Man-Machine Studies 20(5), 469–483 (1984)zbMATHCrossRefGoogle Scholar
  17. 17.
    Skowron, A., Pal, S.K.: Rough sets, pattern recognition, and data mining. Pattern Recognition Letters 24(6), 829–933 (2003)CrossRefGoogle Scholar
  18. 18.
    Wojcik, Z.M., Pawlak, Z.: The rough sets utilization for linguistic pattern recognition. Bulletin of the Polish Academy of Sciences. Technical sciences 34, 285–314 (1986)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Cyran, K., Mrozek, A.: Rough sets in hybrid methods for pattern recognition. International journal of intelligent systems 15, 919–938 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Wang, G.Y.: Rough Reduction in Algebra View and Information View. International Journal of Intelligent System 18(6), 679–688 (2003)zbMATHCrossRefGoogle Scholar
  21. 21.
    Zhong, N., Dong, J.Z., Ohsuga, S.: Using Rough sets with Heuristics for Feature Selection. Journal of Intelligent Information Systems 16(3), 199–214 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)zbMATHCrossRefGoogle Scholar
  23. 23.
    Skowron, A., Polkowski, L.: Decision Algorithms: A Survey of Rough Set - Theoretic Methods. Fundamenta Informaticae 30(3/4), 345–358 (1997)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Hu, X.H., Cercone, N.: Learning Maximal Generalized Decision Rules via Discretization, Generalization and Rough set Feature Selection. In: Proceedings of 9th International Conference on Tools with Artificial Intelligence (ICTAI ’97), pp. 548–556 (1997)Google Scholar
  25. 25.
    Shan, S.G., et al.: Illumination Normalization for Robust Face Recognition against Varying Lighting Conditions. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, Oct. 2003, pp. 157–164. IEEE, Los Alamitos (2003)Google Scholar
  26. 26.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision, 321-331 (1988)Google Scholar
  27. 27.
    Cootes, T.F., Taylor, C.J.: Active Shape Models - Smart Snakes. In: British Machine Vision Conference, pp. 266–275 (1992)Google Scholar
  28. 28.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: 5th European Conference on Computer Vision, pp. 484–498 (1998)Google Scholar
  29. 29.
    Pantic, M., Rothkrantz, L.J.M.: Expert system for automatic analysis of facial expressions. Image and Vision Computing, 881-905 (2000)Google Scholar
  30. 30.
    Tian, Y.L., Bolle, R.M.: Automatic Detecting Neutral Face for Face Authentication and Facial Expression Analysis. In: AAAI-03 Spring Symposium on Intelligent Multimedia Knowledge Management, vol. 3, pp. 24–26 (2003)Google Scholar
  31. 31.
    Seyedarabi, H., Aghagolzadeh, A., Khanmohammadi, S.: Recognition of Six Basic Facial Expressions by Feature-Points Tracking using RBF Neural Network and Fuzzy Inference System. In: 2004 IEEE International Conference on, vol. 2, pp. 1219–1222. IEEE, Los Alamitos (2004)Google Scholar
  32. 32.
    Liu, S., Ying, Z.L.: Facial expression recognition based on fusing local and global feature. Journal of Computer Applications 3, 4–6 (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Yong Yang
    • 1
    • 2
  • Guoyin Wang
    • 2
  • Peijun Chen
    • 1
  • Jian Zhou
    • 1
  • Kun He
    • 2
  1. 1.School of Information Science and Technology, Southwest Jiaotong University, Chengdou, 610031P.R. China
  2. 2.Institute of Computer Science & Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065P.R. China

Personalised recommendations