Advertisement

A Note on Definability and Approximations

  • Yiyu Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4400)

Abstract

Definability and approximations are two important notions of the theory of rough sets. In many studies, one is used to define the other. There is a lack of an explicit interpretation of the physical meaning of definability. In this paper, the definability is used as a more primitive notion, interpreted in terms of formulas of a logic language. A set is definable if there is a formula that defines the set, i.e., the set consists of all those elements satisfying the formula. As a derived notion, the lower and upper approximations of a set are two definable sets that approximate the set from below and above, respectively. This formulation may be more natural, bringing new insights into our understanding of rough set approximations.

Keywords

Equivalence Class Equivalence Relation Atomic Formula Conjunctive Normal Form Logic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 157–184. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Buszkowski, W.: Approximation spaces and definability for incomplete information systems. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 115–122. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Grzymala-Busse, J.W.: Incomplete data and generalization of indiscernibility relation, definability, and approximations. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hobbs, J.R.: Granularity. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 432–435 (1985)Google Scholar
  5. 5.
    Järvinen, J., Kortelainen, J.: A note on definability in rough set theory. In: De Baets, B., et al. (eds.) Current Issues in Data and Knowledge Engineering, pp. 272–277. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2004)Google Scholar
  6. 6.
    Kreisel, G., Krivine, J.L.: Elements of Mathematical Logic. North-Holland, Amsterdam (1971)zbMATHGoogle Scholar
  7. 7.
    Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
  8. 8.
    Mi, J.S., Zhang, W.X.: An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160, 235–249 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Orlowska, E.: Logical aspects of learning concepts. International Journal of Approximate Reasoning 2, 349–364 (1988)zbMATHCrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  11. 11.
    Pawlak, Z., et al.: Rough sets. Communications of the ACM 38, 89–95 (1995)CrossRefGoogle Scholar
  12. 12.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Information Sciences 177, 28–40 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences 177, 41–73 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pomykala, J.A.: On definability in the nondeterministic information system. Bulletin of the Polish Academy of Sciences: Mathematics 36, 193–210 (1987)MathSciNetGoogle Scholar
  16. 16.
    Smith, E.E.: Concepts and induction. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 501–526. The MIT Press, Cambridge (1989)Google Scholar
  17. 17.
    Sowa, J.F.: Conceptual Structures, Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  18. 18.
    Van Mechelen, I., et al. (eds.): Categories and Concepts, Theoretical Views and Inductive Data Analysis. Academic Press, New York (1993)Google Scholar
  19. 19.
    Wasilewska, A.: Definable ses in knowledge representation systems. Bulletin of the Polish Academy of Sciences: Mathematics 35, 629–635 (1987)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Wu, W.Z., Zhang, W.X.: Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159, 233–254 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Yao, J.T., Yao, Y.Y., Zhao, Y.: Foundations of classification. In: Lin, T.Y., et al. (eds.) Foundations and Novel Approaches in Data Mining, pp. 75–97. Springer, Berlin (2006)Google Scholar
  22. 22.
    Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhu, W.: Topological approaches to covering rough sets. Information Sciences, in pressGoogle Scholar
  26. 26.
    Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Yiyu Yao
    • 1
  1. 1.Department of Computer Science, University of Regina, Regina, Saskatchewan, S4S 0A2Canada

Personalised recommendations