Speech Coding Employing Intelligent Signal Processing Techniques

  • Andrzej Czyzewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4400)


The concepts and experiments presented are focused on modifications of an existing parametric speech coding algorithm (CELP) introduced in order to improve subjective speech quality in telephone connections. The perceptual coding to bit rate limiting was added and algorithms qualifying speech components to the categories of ”voiced”, ”unvoiced”, ”transients” using rough sets were studied. The speech signal quality achieved with the proposed hybrid codec was compared to the quality offered by some standard speech codecs.


CELP residual coding hybrid codec architecture  perceptual speech coding rough set decision algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pawlak, Z.: A Treatise on Rough Sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV, pp. 1–17. Springer, Berlin (2005)CrossRefGoogle Scholar
  2. 2.
    Kulesza, M., Szwoch, G., Czyzewski, A.: Improving signal quality in speech codec using a hybrid perceptual-parametric algorithm. In: Multimedia and Network Information Systems’ (MISSI), Wroclaw, Poland, 21-22 Sept., 2006, pp. 181–192 (2006)Google Scholar
  3. 3.
    Ritz, C.H.: Lossless wideband speech coding. In: 10th International Conference on Speech Science and Technology, Sydney, Australia (Dec. 2004)Google Scholar
  4. 4.
    Czyzewski, A.: Applications of Neural Networks and Perceptual Masking to Audio Restoration. Journal of New Music Research 22(5), 339–349 (2001)CrossRefGoogle Scholar
  5. 5.
    Verma, T.S., Levine, S.N., Meng, T.H.: Transient Modeling Synthesis: a flexible analysis/synthesis tool for transient signals. In: International Computer Music Conference, Greece (1997)Google Scholar
  6. 6.
    Chu, W.C.: Speech Coding Algorithms. Foundation and Evolution of Standardized Coders. John Wiley & Sons, Hoboken (2003)zbMATHGoogle Scholar
  7. 7.
    Goldberg, R., Riek, L.: A Practical Handbook of Speech Coders. CRC Press, Boca Raton (2000)zbMATHGoogle Scholar
  8. 8.
    Kliewer, J., Mertins, A.: Audio subband coding with improved representation of transient signal segments. In: Proc 9th European Signal Processing Conference (EUSICPO-98), Rhodes, Greece, September 1998, pp. 1245–1248 (1998)Google Scholar
  9. 9.
    Babu, V.S., et al.: Transient Detection for Transform Domain Coders. In: AES 116th Convention, Berlin (2004)Google Scholar
  10. 10.
    ISO/IEC 14496-3:2001 Information technology - Generic coding of moving pictures and associated audio information: Part 3: Advanced Audio Coding (AAC) (2001)Google Scholar
  11. 11.
    OGG Vorbis Specification:
  12. 12.
    Painter, T., Spanias, A.: Perceptual Coding of Digital Audio. Proceedings of IEEE 88, 451–513 (2000)CrossRefGoogle Scholar
  13. 13.
    Opticom, Opera your digital ear. User manual, version 3.5 (2002)Google Scholar
  14. 14.
    Czyzewski, A., et al.: Intelligent Algorithms for Movie Sound Tracks Restoration. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V (2006)Google Scholar
  15. 15.
    ITU-T Recommendation P.862, Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs (2003)Google Scholar
  16. 16.
    Kulesza, M., Szwoch, G., Czyzewski, A.: High quality speech coding using combined parametric and perceptual modules. In: 13th World Enformatika Conference Proc., Budapest, Hungary, 26–28 May, 2006, pp. 244–249 (2006)Google Scholar
  17. 17.
    Czyzewski, A., Królikowski, R.: Neuro-Rough Control of Masking Thresholds for Audio Signal Enhancement. Journal of Neurocomputing 36, 5–27 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Annadana, R., Ferreira, A., Sinha, D.: A new low bit rate speech coding scheme for mixed content. In: 120th AES Convention, Paris, France (May 2006)Google Scholar
  19. 19.
    Ahmadi, S., Jelinek, M.: n the architecture, operation, and applications of VMRWB: The new cdma2000 wideband speech coding standard. IEEE Communication Magazine 44(5), 74–81 (2006)CrossRefGoogle Scholar
  20. 20.
    Chazan, D., et al.: High quality sinusoidal modeling of wideband speech for the purposes of speech synthesis and modification. In: IEEE International Conference on Acoustic, Speech, and Signal Processing - ICASSP, Toulouse, May 2006, IEEE, Los Alamitos (2006)Google Scholar
  21. 21.
    Fuemmeler, J., Hardie, R., Gardner, W.: Techniques for the regeneration of wideband speech form narrow band speech. EURASIP Journal on Applied Signal Processing 2001(4), 266–274 (2001)CrossRefGoogle Scholar
  22. 22.
    Levine, S., Smith III., J.: Improvements to the Switched Parametric & Transform Audio Coder. In: Proc. 1999 IEEE Workshop on Application of Signal Processing to Audio and Acoustics, New York, Oct. 1999, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  23. 23.
    Najafzadeh-Azghandi, H., Kabal, P.: Perceptual coding of narrowband audio signals at 8 kbit/s. In: Proc. IEEE Workshop Speech Coding, Pocono Manor, IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  24. 24.
    Ojala, P., et al.: The adaptive multirate wideband speech codec: system characteristics, quality advances, and deployment strategies. IEEE Communication Magazine 44(5), 59–65 (2006)CrossRefGoogle Scholar
  25. 25.
    Kulesza, M., et al.: High Quality Speech Codec Employing Sines+Noise+Transients Model. In: 53rd Open Seminar on Acoustics, Zakopane, Poland, 11–15 Sept. (2006)Google Scholar
  26. 26.
    Yang, M.: Low bit rate speech coding. IEEE Potentials 23(4), 32–36 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Andrzej Czyzewski
    • 1
  1. 1.Multimedia Systems Department, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 GdanskPoland

Personalised recommendations