Skip to main content

Mining Data from a Metallurgical Process by a Novel Neural Network Pruning Method

  • Conference paper
  • 1861 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4432)

Abstract

Many metallurgical processes are complex and due to hostile environment it is difficult to carry out reliable measurement of their internal state, but the demands on high productivity and consideration of environmental issues require that the processes still be strictly controlled. Due to the complexity and non-ideality of the processes, it is often not feasible to develop mechanistic models. An alternative is to use neural networks as black-box models, built on historical process data. The selection of relevant inputs and appropriate network structure are still problematic issues. The present work addresses these two problems in the modeling of the hot metal silicon content in the blast furnace. An algorithm is applied to find relevant inputs and their time lags, as well as a proper network size, by pruning a large network. The resulting models exhibit good prediction capabilities and the inputs and time lags detected are in good agreement with practical metallurgical knowledge.

Keywords

  • Blast Furnace
  • Hide Node
  • Silicon Content
  • Feedforward Neural Network
  • Relevant Input

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-71629-7_14
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-71629-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cybenko, G.: Approximations by superpositions of sigmoidal function. Math. Contr. Sign. 2, 303–314 (1989)

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and adaptive systems: Fundamentals through simulations. John Wiley & Sons, New York (1999)

    Google Scholar 

  3. Frean, M.: The Upstart Algorithm. A Method for Constructing and Training Feed-forward Neural Networks. Neural Computation 2, 198–209 (1991)

    CrossRef  Google Scholar 

  4. Fahlman, S.E., Lebiere, C.: The Cascade-Correlation Learning Architecture. In: Touretzky, D.S. (ed.) Adv. Neural Inf. Proc. Syst. 2, pp. 524–532. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  5. Le Chun, Y., Denker, J.S., Solla, S.A.: Optimal Brain Damage. In: Touretzky, D.S. (ed.) Adv. Neural Inf. Proc. Syst. 2, pp. 598–605. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  6. Sridhar, D.V., Bartlett, E.B., Seagrave, R.C.: Information theoretic subset selection for neural networks. Comput. Chem. Engng. 22, 613–626 (1998)

    CrossRef  Google Scholar 

  7. Saxén, H., Pettersson, F.: Method for the selection of inputs and structure of feedforward neural networks. Comput. Chem. Engng. 30, 1038–1045 (2006)

    CrossRef  Google Scholar 

  8. Hinnelä, J., Saxén, H., Pettersson, F.: Modeling of the blast furnace burden distribution by evolving neural networks. Ind. Engng Chem. Res. 42, 2314–2323 (2003)

    CrossRef  Google Scholar 

  9. Haykin, S.: Kalman filtering and neural networks. Wiley, New York (2001)

    Google Scholar 

  10. Omori, Y. (ed.): Blast Furnace Phenomena and Modelling. Elsevier, London (1987)

    Google Scholar 

  11. Phadke, M.S., Wu, S.M.: Identification of Multiinput - Multioutput Transfer Function and Noise Model of a Blast Furnace from Closed-Loop Data. IEEE Trans. Aut. Contr. 19, 944–951 (1974)

    CrossRef  Google Scholar 

  12. Unbehauen, H., Diekmann, K.: Application of MIMO Identification to a Blast Furnace. In: IFAC Identification and System Parameter Estimation, pp. 180–185 (1982)

    Google Scholar 

  13. Saxén, H.: Short Term Prediction of Silicon Content in Pig Iron. Can. Met. Quart. 33, 319–326 (1994)

    Google Scholar 

  14. Saxén, H., Östermark, R.: State Realization with Exogenous Variables - A Test on Blast Furnace Data. Europ. J. Oper. Res. 89, 34–52 (1996)

    MATH  Google Scholar 

  15. Chen, J.: A Predictive System for Blast Furnaces by Integrating a Neural Network with Qualitative Analysis. Engng. Appl. AI 14, 77–85 (2001)

    MATH  Google Scholar 

  16. Waller, M., Saxén, H.: On the Development of Predictive Models with Applications to a Metallurgical Process. Ind. Eng. Chem. Res. 39, 982–988 (2000)

    CrossRef  Google Scholar 

  17. Waller, M., Saxén, H.: Application of Nonlinear Time Series Analysis to the Prediction of Silicon Content of Pig Iron. ISIJ Int. 42, 316–318 (2002)

    CrossRef  Google Scholar 

  18. Bhattacarya, T.: Prediction of silicon content in blast furnace hot metal using Partial Least Squares (PLS). ISIJ Int. 45, 1943–1945 (2005)

    CrossRef  Google Scholar 

  19. Gao, C.H., Qian, J.X.: Time-dependent fractal characteristics on time series of silicon content in hot metal of blast furnace. ISIJ Int. 45, 1269–1271 (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Saxén, H., Pettersson, F., Waller, M. (2007). Mining Data from a Metallurgical Process by a Novel Neural Network Pruning Method. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)