Skip to main content

Mining Data from a Metallurgical Process by a Novel Neural Network Pruning Method

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

  • 2023 Accesses

Abstract

Many metallurgical processes are complex and due to hostile environment it is difficult to carry out reliable measurement of their internal state, but the demands on high productivity and consideration of environmental issues require that the processes still be strictly controlled. Due to the complexity and non-ideality of the processes, it is often not feasible to develop mechanistic models. An alternative is to use neural networks as black-box models, built on historical process data. The selection of relevant inputs and appropriate network structure are still problematic issues. The present work addresses these two problems in the modeling of the hot metal silicon content in the blast furnace. An algorithm is applied to find relevant inputs and their time lags, as well as a proper network size, by pruning a large network. The resulting models exhibit good prediction capabilities and the inputs and time lags detected are in good agreement with practical metallurgical knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cybenko, G.: Approximations by superpositions of sigmoidal function. Math. Contr. Sign. 2, 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and adaptive systems: Fundamentals through simulations. John Wiley & Sons, New York (1999)

    Google Scholar 

  3. Frean, M.: The Upstart Algorithm. A Method for Constructing and Training Feed-forward Neural Networks. Neural Computation 2, 198–209 (1991)

    Article  Google Scholar 

  4. Fahlman, S.E., Lebiere, C.: The Cascade-Correlation Learning Architecture. In: Touretzky, D.S. (ed.) Adv. Neural Inf. Proc. Syst. 2, pp. 524–532. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  5. Le Chun, Y., Denker, J.S., Solla, S.A.: Optimal Brain Damage. In: Touretzky, D.S. (ed.) Adv. Neural Inf. Proc. Syst. 2, pp. 598–605. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  6. Sridhar, D.V., Bartlett, E.B., Seagrave, R.C.: Information theoretic subset selection for neural networks. Comput. Chem. Engng. 22, 613–626 (1998)

    Article  Google Scholar 

  7. Saxén, H., Pettersson, F.: Method for the selection of inputs and structure of feedforward neural networks. Comput. Chem. Engng. 30, 1038–1045 (2006)

    Article  Google Scholar 

  8. Hinnelä, J., Saxén, H., Pettersson, F.: Modeling of the blast furnace burden distribution by evolving neural networks. Ind. Engng Chem. Res. 42, 2314–2323 (2003)

    Article  Google Scholar 

  9. Haykin, S.: Kalman filtering and neural networks. Wiley, New York (2001)

    Google Scholar 

  10. Omori, Y. (ed.): Blast Furnace Phenomena and Modelling. Elsevier, London (1987)

    Google Scholar 

  11. Phadke, M.S., Wu, S.M.: Identification of Multiinput - Multioutput Transfer Function and Noise Model of a Blast Furnace from Closed-Loop Data. IEEE Trans. Aut. Contr. 19, 944–951 (1974)

    Article  Google Scholar 

  12. Unbehauen, H., Diekmann, K.: Application of MIMO Identification to a Blast Furnace. In: IFAC Identification and System Parameter Estimation, pp. 180–185 (1982)

    Google Scholar 

  13. Saxén, H.: Short Term Prediction of Silicon Content in Pig Iron. Can. Met. Quart. 33, 319–326 (1994)

    Google Scholar 

  14. Saxén, H., Östermark, R.: State Realization with Exogenous Variables - A Test on Blast Furnace Data. Europ. J. Oper. Res. 89, 34–52 (1996)

    MATH  Google Scholar 

  15. Chen, J.: A Predictive System for Blast Furnaces by Integrating a Neural Network with Qualitative Analysis. Engng. Appl. AI 14, 77–85 (2001)

    MATH  Google Scholar 

  16. Waller, M., Saxén, H.: On the Development of Predictive Models with Applications to a Metallurgical Process. Ind. Eng. Chem. Res. 39, 982–988 (2000)

    Article  Google Scholar 

  17. Waller, M., Saxén, H.: Application of Nonlinear Time Series Analysis to the Prediction of Silicon Content of Pig Iron. ISIJ Int. 42, 316–318 (2002)

    Article  Google Scholar 

  18. Bhattacarya, T.: Prediction of silicon content in blast furnace hot metal using Partial Least Squares (PLS). ISIJ Int. 45, 1943–1945 (2005)

    Article  Google Scholar 

  19. Gao, C.H., Qian, J.X.: Time-dependent fractal characteristics on time series of silicon content in hot metal of blast furnace. ISIJ Int. 45, 1269–1271 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Saxén, H., Pettersson, F., Waller, M. (2007). Mining Data from a Metallurgical Process by a Novel Neural Network Pruning Method. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics