A Study into the Improvement of Binary Hopfield Networks for Map Coloring

  • Gloria Galán-Marín
  • Enrique Mérida-Casermeiro
  • Domingo López-Rodríguez
  • Juan M. Ortiz-de-Lazcano-Lobato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4432)

Abstract

The map-coloring problem is a well known combinatorial optimization problem which frequently appears in mathematics, graph theory and artificial intelligence. This paper presents a study into the performance of some binary Hopfield networks with discrete dynamics for this classic problem. A number of instances have been simulated to demonstrate that only the proposed binary model provides optimal solutions. In addition, for large-scale maps an algorithm is presented to improve the local minima of the network by solving gradually growing submaps of the considered map. Simulation results for several n-region 4-color maps showed that the proposed neural algorithm converged to a correct colouring from at least 90% of initial states without the fine-tuning of parameters required in another Hopfield models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saaty, T., Hainen, P.: The four color theorem: Assault and Conquest. McGraw-Hill, New York (1977)Google Scholar
  2. 2.
    Appel, K., Haken, W.: The solution of the four-color-map problem. Scientific American, 108–121 (Oct. 1977)Google Scholar
  3. 3.
    Takefuji, Y., Lee, K.C.: Artificial neural networks for four-colouring map problems and K-colorability problems. IEEE Trans. Circuits Syst. 38, 326–333 (1991)CrossRefGoogle Scholar
  4. 4.
    Funabiki, N., Takenaka, Y., Nishikawa, S.: A maximum neural network approach for N-queens problem. Biol. Cybern. 76, 251–255 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    Funabiki, N., Takefuji, Y., Lee, K.C.: A Neural Network Model for Finding a Near-Maximum Clique. J. of Parallel and Distributed Computing 14, 340–344 (1992)CrossRefGoogle Scholar
  6. 6.
    Lee, K.C., Funabiki, N., Takefuji, Y.: A Parallel Improvement Algorithm for the Bipartite Subgraph Problem. IEEE Trans. Neural Networks 3, 139–145 (1992)CrossRefGoogle Scholar
  7. 7.
    Galán-Marín, G., Muñoz-Pérez, J.: Design and Analysis of Maximum Hopfield Networks. IEEE Transactions on Neural Networks 12, 329–339 (2001)CrossRefGoogle Scholar
  8. 8.
    Galán-Marín, G., Mérida-Casermeiro, E., Muñoz-Pérez, J.: Modelling competitive Hopfield networks for the maximum clique problem. Computers & Operations Research 30, 603–624 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wang, L.: Discrete-time convergence theory and updating rules for neural networks with energy functions. IEEE Trans. Neural Networks 8, 445–447 (1997)CrossRefGoogle Scholar
  10. 10.
    Tateishi, M., Tamura, S.: Comments on ’Artificial neural networks for four-colouring map problems and K-colorability problems’. IEEE Trans. Circuits Syst. I: Fundamental Theory Applicat. 41, 248–249 (1994)CrossRefGoogle Scholar
  11. 11.
    Galán-Marín, G., Muñoz-Pérez, J.: A new input-output function for binary Hopfield Neural Networks. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1606, pp. 311–320. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Wang, J., Tang, Z.: An improved optimal competitive Hopfield network for bipartite subgraph problems. Neurocomputing 61, 413–419 (2004)CrossRefGoogle Scholar
  13. 13.
    Joya, G., Atencia, M.A., Sandoval, F.: Hopfield neural networks for optimization: study of the different dynamics. Neurocomputing 43, 219–237 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Dahl, E.D.: Neural Network algorithm for an NP-Complete problem: Map and graph coloring. In: Proc. First Int. Joint Conf. on Neural Networks III, pp. 113–120 (1987)Google Scholar
  15. 15.
    Sun, Y.: A generalized updating rule for modified Hopfield neural network for quadratic optimization. Neurocomputing 19, 133–143 (1998)CrossRefGoogle Scholar
  16. 16.
    Peng, M., Gupta, N.K., Armitage, A.F.: An investigation into the improvement of local minima of the Hopfield network. Neural Networks 9, 1241–1253 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Gloria Galán-Marín
    • 1
  • Enrique Mérida-Casermeiro
    • 2
  • Domingo López-Rodríguez
    • 2
  • Juan M. Ortiz-de-Lazcano-Lobato
    • 3
  1. 1.Department of Electronics and Electromechanical Engineering, University of Extremadura, BadajozSpain
  2. 2.Department of Applied Mathematics, University of Málaga, MálagaSpain
  3. 3.Department of Computer Science and Artificial Intelligence, University of Málaga, MálagaSpain

Personalised recommendations