Abstract
Evolutionary algorithms have been adequately applied in solving single and multi-objective optimization problems. In the single-objective case various studies have shown the usefulness of combining gradient based classical search principles with evolutionary algorithms. However there seems to be a dearth of such studies for the multi-objective case. In this paper, we take two classical search operators and discuss their use as a local search operator in a state-of-the-art evolutionary algorithm. These operators require gradient information which is obtained using a stochastic perturbation technique requiring only two function evaluations. Computational studies on a number of test problems of varying complexity demonstrate the efficiency of hybrid algorithms in solving a large class of complex multi-objective optimization problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bosman, P.A.N., de Jong, E.D.: Exploiting gradient information in numerical multi–objective evolutionary optimization. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 755–762. ACM Press, New York (2005)
Bosman, P.A.N., de Jong, E.D.: Combining gradient techniques for numerical multi-objective evolutionary optimization. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 627–634. ACM Press, New York (2006)
Brown, M., Smith, R.E.: Effective use of directional information in multi-objective evolutionary computation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 778–789. Springer, Heidelberg (2003)
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)
Fonesca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)
Harada, K., Ikeda, K., Kobayashi, S.: Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of ga then ls. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 667–674. ACM Press, New York (2006)
Harada, K., Sakuma, J., Kobayashi, S.: Local search for multiobjective function optimization: pareto descent method. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 659–666. ACM Press, New York (2006)
Kiwiel, K.C.: Descent methods for nonsmooth convex constrained minimization. In: Nondifferentiable optimization: motivations and applications (Sopron, 1984). Lecture Notes in Econom. and Math. Systems, vol. 255, pp. 203–214. Springer, Berlin (1985)
Mukai, H.: Algorithms for multicriterion optimization. IEEE Trans. Automat. Control 25(2), 177–186 (1980)
Recchioni, M.C.: A path following method for box-constrained multiobjective optimization with applications to goal programming problems. Math. Methods Oper. Res. 58(1), 69–85 (2003)
Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Optimization Theory and Applications 114(1), 209–222 (2002)
Shukla, P.K., Deb, K., Tiwari, S.: Comparing Classical Generating Methods with an Evolutionary Multi-objective Optimization Method. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 311–325. Springer, Heidelberg (2005)
Spall, J.C.: Implementation of the Simultaneous Perturbation Algorithm for Stochastic Optimization. IEEE Transactions on Aerospace and Electronic Systems 34(3), 817–823 (1998)
Timmel, G.: Ein stochastisches Suchverrahren zur Bestimmung der optimalen Kompromißlösungen bei statischen polzkriteriellen Optimierungsaufgaben. Wiss. Z. TH Ilmenau 26(5), 159–174 (1980)
Timmel, G.: Modifikation eines statistischen Suchverfahrens der Vektoroptimierung. Wiss. Z. TH Ilmenau 28(6), 139–148 (1982)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Shukla, P.K. (2007). Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-71618-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71589-4
Online ISBN: 978-3-540-71618-1
eBook Packages: Computer ScienceComputer Science (R0)