Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization

  • Pradyumn Kumar Shukla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4431)

Abstract

Evolutionary algorithms have been adequately applied in solving single and multi-objective optimization problems. In the single-objective case various studies have shown the usefulness of combining gradient based classical search principles with evolutionary algorithms. However there seems to be a dearth of such studies for the multi-objective case. In this paper, we take two classical search operators and discuss their use as a local search operator in a state-of-the-art evolutionary algorithm. These operators require gradient information which is obtained using a stochastic perturbation technique requiring only two function evaluations. Computational studies on a number of test problems of varying complexity demonstrate the efficiency of hybrid algorithms in solving a large class of complex multi-objective optimization problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosman, P.A.N., de Jong, E.D.: Exploiting gradient information in numerical multi–objective evolutionary optimization. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 755–762. ACM Press, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Bosman, P.A.N., de Jong, E.D.: Combining gradient techniques for numerical multi-objective evolutionary optimization. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 627–634. ACM Press, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Brown, M., Smith, R.E.: Effective use of directional information in multi-objective evolutionary computation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 778–789. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)MATHGoogle Scholar
  5. 5.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fonesca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Harada, K., Ikeda, K., Kobayashi, S.: Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of ga then ls. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 667–674. ACM Press, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Harada, K., Sakuma, J., Kobayashi, S.: Local search for multiobjective function optimization: pareto descent method. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 659–666. ACM Press, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Kiwiel, K.C.: Descent methods for nonsmooth convex constrained minimization. In: Nondifferentiable optimization: motivations and applications (Sopron, 1984). Lecture Notes in Econom. and Math. Systems, vol. 255, pp. 203–214. Springer, Berlin (1985)Google Scholar
  11. 11.
    Mukai, H.: Algorithms for multicriterion optimization. IEEE Trans. Automat. Control 25(2), 177–186 (1980)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Recchioni, M.C.: A path following method for box-constrained multiobjective optimization with applications to goal programming problems. Math. Methods Oper. Res. 58(1), 69–85 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Optimization Theory and Applications 114(1), 209–222 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shukla, P.K., Deb, K., Tiwari, S.: Comparing Classical Generating Methods with an Evolutionary Multi-objective Optimization Method. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 311–325. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Spall, J.C.: Implementation of the Simultaneous Perturbation Algorithm for Stochastic Optimization. IEEE Transactions on Aerospace and Electronic Systems 34(3), 817–823 (1998)CrossRefGoogle Scholar
  16. 16.
    Timmel, G.: Ein stochastisches Suchverrahren zur Bestimmung der optimalen Kompromißlösungen bei statischen polzkriteriellen Optimierungsaufgaben. Wiss. Z. TH Ilmenau 26(5), 159–174 (1980)MATHMathSciNetGoogle Scholar
  17. 17.
    Timmel, G.: Modifikation eines statistischen Suchverfahrens der Vektoroptimierung. Wiss. Z. TH Ilmenau 28(6), 139–148 (1982)MATHMathSciNetGoogle Scholar
  18. 18.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pradyumn Kumar Shukla
    • 1
  1. 1.Institute of Numerical Mathematics, Department of Mathematics, Dresden University of Technology, Dresden PIN 01069Germany

Personalised recommendations