Skip to main content

A Model of Non-elemental Associative Learning in the Mushroom Body Neuropil of the Insect Brain

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4431))

Included in the following conference series:

Abstract

We developed a computational model of the mushroom body (MB), a prominent region of multimodal integration in the insect brain, and tested the model’s performance for non-elemental associative learning in visual pattern avoidance tasks. We employ a realistic spiking neuron model and spike time dependent plasticity, and learning performance is investigated in closed-loop conditions. We show that the distinctive neuroarchitecture (divergence onto MB neurons and convergence from MB neurons, with an otherwise non-specific connectivity) is sufficient for solving non-elemental learning tasks and thus modulating underlying reflexes in context-dependent, heterarchical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giurfa, M., Zhang, S., Jennett, A., Menzel, R., Srinivasan, M.: The concepts of sameness and difference in an insect. Nature 410, 930–933 (2001)

    Article  Google Scholar 

  2. Giurfa, M., Eichmann, B., Menzel, R.: Symmetry perception in an insect. Nature 382, 458–461 (1996)

    Article  Google Scholar 

  3. Liu, L., Wolf, R., Ernst, R., Heisenberg, M.: Context generalisation in Drosophila visual learning requires the Mushroom Bodies. Nature 400, 753–756 (1999)

    Article  Google Scholar 

  4. Mizunami, M., Okada, R., Li, Y., Strausfeld, N.: Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402, 520–537 (1998)

    Article  Google Scholar 

  5. Mizunami, M., Okada, R., Li, Y., Strausfeld, N.: Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J. Comp. Neurol. 402, 501–519 (1998)

    Article  Google Scholar 

  6. Nowotny, T., Rabinovich, M., Huerta, R., Abarbanel, H.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. J. Comput. Neurosci. 15, 271–281 (2003)

    Article  Google Scholar 

  7. Nowotny, T., Huerta, R., Abarbanel, H., Rabinovich, M.: Self-organization in the olfactory system: one shot odor recognition in insects. Biol. Cybern. 93, 436–446 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Giurfa, M.: Cognitive neuroethology: dissecting non-elemental learning in a honeybee. Curr. Opin. Neurobiol. 13, 726–735 (2003)

    Article  Google Scholar 

  9. Wessnitzer, J., Webb, B.: Multimodal sensory integration in insects - towards insect brain control architectures. Bioinspir. Biomim. 1, 63–75 (2006)

    Article  Google Scholar 

  10. Okada, R., Sakura, M., Mizunami, M.: Distribution of dendrites of descending neurons and its implications for the basic organisation of the cockroach brain. J. Comp. Neurol. 458, 158–174 (2003)

    Article  Google Scholar 

  11. Menzel, R., Giurfa, M.: Cognitive architecture of a mini-brain: the honeybee. Trends Cogn. Sci. 5, 62–71 (2001)

    Article  Google Scholar 

  12. Heisenberg, M.: What do the mushroom bodies do for the insect brain? An introduction. Learning Memory 5, 1–10 (1998)

    Google Scholar 

  13. Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nature 3, 884–895 (2002)

    Google Scholar 

  14. Perez-Orive, J., Bazhenov, M., Laurent, G.: Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J. Neurosci. 24, 6037–6047 (2004)

    Article  Google Scholar 

  15. Izhikevich, E.: Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge (2006)

    Google Scholar 

  16. Dan, Y., Poo, M.: Spike timing dependent plasticity of neural circuits. Neuron 44, 23–30 (2004)

    Article  Google Scholar 

  17. Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing dependent synaptic plasticity. Nature Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  18. Olshausen, B., Field, D.: Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wessnitzer, J., Webb, B., Smith, D. (2007). A Model of Non-elemental Associative Learning in the Mushroom Body Neuropil of the Insect Brain. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71618-1_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71589-4

  • Online ISBN: 978-3-540-71618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics