A New Self-adaptative Crossover Operator for Real-Coded Evolutionary Algorithms

  • Manuel E. Gegúndez
  • Pablo Palacios
  • José L. Álvarez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4431)


In this paper we propose a new self-adaptative crossover operator for real coded evolutionary algorithms. This operator has the capacity to simulate other real-coded crossover operators dynamically and, therefore, it has the capacity to achieve exploration and exploitation dynamically during the evolutionary process according to the best individuals. In other words, the proposed crossover operator may handle the generational diversity of the population in such a way that it may either generate additional population diversity from the current one, allowing exploration to take effect, or use the diversity previously generated to exploit the better solutions.

In order to test the performance of this crossover, we have used a set of test functions and have made a comparative study of the proposed crossover against other classic crossover operators. The analysis of the results allows us to affirm that the proposed operator has a very suitable behavior; although, it should be noted that it offers a better behavior applied to complex search spaces than simple ones.


Genetic Algorithm Evolutionary Algorithm Crossover Operator Unimodal Function Uniform Crossover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  2. 2.
    Goldberg, D.: Genetic Algorithm in Search, Optimisation, and Machine Learning. Addison-Wesley, Ann Abor (1989)Google Scholar
  3. 3.
    Lucasius, C.B., Kateman, G.: Applications of genetic algorithms in chemometrics. In: Proc. of the 3rd Int Conf on Genetic Algorithms, pp. 170–176. Morgan Kaufmann, San Francisco (1989)Google Scholar
  4. 4.
    Zamparelli, M.: Genetically trained cellular neural networks. Neural Networks 10(6), 1143–1151 (1997)CrossRefGoogle Scholar
  5. 5.
    Oyama, A., Obayashi, S., Nakamura, T.: Real-coded adaptive range genetic algorithm applied to transonic wing optimization. Appl. Soft Computing 1(3), 179–187 (2001)CrossRefGoogle Scholar
  6. 6.
    Roubos, J.A., van Straten, G., van Boxtel, A.J.B.: An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance. Journal Biotechnol. 67(2–3), 173–187 (1999)CrossRefGoogle Scholar
  7. 7.
    Kawabe, T., Tagami, T.: A real coded genetic algorithm for matrix inequality design approach of robust PID controller with two degrees of freedom. In: Proc. of the 1997 IEEE Int. Symp. on Intelligent Control, pp. 119–124 (1997)Google Scholar
  8. 8.
    Duffy, J., McNelis, P.D.: Approximating and simulating the stochastic growth model: Parameterized expectations, neural networks, and the genetic algorithm. Journal Econ. Dyn. Control 25(9), 1273–1303 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Harris, S.P., Ifeachor, E.C.: Automatic design of frequency sampling filters by hybrid genetic algorithm techniques. IEEE Trans. Sig. Process. 46(12), 3304–3314 (1998)CrossRefGoogle Scholar
  10. 10.
    Caorsi, S., Massa, A., Pastorino, M.: A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE Trans. Geosci. Remote Sens. 38(4), 1697–1708 (2000)CrossRefGoogle Scholar
  11. 11.
    Shi, K.L., Chan, T.F., Wong, Y.K., Ho, S.L.: Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans. Indust. Electron. 49(1), 124–133 (2002)CrossRefGoogle Scholar
  12. 12.
    Azariadis, P.N., Nearchou, A.C., Aspragathos, N.A.: An evolutionary algorithm for generating planar developments of arbitrarily curved surfaces. Comp. Industry 47(3), 357–368 (2002)CrossRefGoogle Scholar
  13. 13.
    Turcanu, C.O., Craciunescu, T.: A genetic approach to limited data tomographic reconstruction of time-resolved energy spectrum of short-pulsed neutron sources. Pattern Recognition Letter 23(8), 967–976 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Chang, F.J.: Real-coded genetic algorithm for rule-based flood control reservoir management. Water Resource Management 12(3), 185–198 (1998)CrossRefGoogle Scholar
  15. 15.
    Michalewicz, Z.: Genetics Algorithms + Data Structures = Evolution Programs. WNT, Warsaw (1996)Google Scholar
  16. 16.
    Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review 12(4), 265–319 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  18. 18.
    Wright, A.H.: Genetic Algorithms for Real Parameter Optimization. Foundations of genetic algorithms (1991)Google Scholar
  19. 19.
    Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) ICGA-89, Morgan Kaufmann, San Francisco (1989)Google Scholar
  20. 20.
    Eshelman, L.J., Caruana, R.A., Schaffer, J.D.: Biases in the Crossover Landscape (1997)Google Scholar
  21. 21.
    Agrawal, R.B.: Simulated binary crossover for real-coded genetic algorithms. Indian Institute of Technology, Kanpur (1995)Google Scholar
  22. 22.
    Lozano, M., et al.: Real Coded Memetic Algorithms with Crossover Hill-Climbing. Evolutionary Computation 12(3), 273–302 (2004)CrossRefGoogle Scholar
  23. 23.
    De Jong, K.E.: An analysis of the behavior of a class of genetic adaptive systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  24. 24.
    Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)zbMATHGoogle Scholar
  25. 25.
    Torn, A., Zilinskas, A.: Global Optimization. Springer, Berlin (1989)Google Scholar
  26. 26.
    Griewank, A.O.: Generalized Descent for Global Optimization. Journal of Optimization Theory and Applications 34(1), 11–39 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Beyer, H.-G., Deb, K.: On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation 5(3), 250–270 (2001)CrossRefGoogle Scholar
  28. 28.
    Kita, H.: A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computing Journal 9(2), 223–241 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Manuel E. Gegúndez
    • 1
  • Pablo Palacios
    • 2
  • José L. Álvarez
    • 2
  1. 1.Department of Mathematics, University of Huelva, HuelvaSpain
  2. 2.Department of Computer Science, University of Huelva, HuelvaSpain

Personalised recommendations