Optimal Design Centring Through a Hybrid Approach Based on Evolutionary Algorithms and Monte Carlo Simulation

  • Luis Pierluissi
  • Claudio M. Rocco S.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4431)


In many situations a robust design could be expensive and decision-makers need to evaluate a design that is not robust, that is, a design with a probability of satisfying the design specifications (or yield) less than 100 %. In this paper we propose a procedure for centring a design that maximises the yield, given predefined component tolerances. The hybrid approach is based on the use of Evolutionary Algorithms, Interval Arithmetic and procedures to estimate the yield percentage. The effectiveness of the method is tested on a literature case. We compare the special evolutionary strategy (1+1) with a genetic algorithm and deterministic, statistical and interval-based procedures for yield estimation.


Genetic Algorithm Evolution Algorithm Hybrid Approach Feasible Region Robust Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hendrix, E.M., Mecking, C.J., Hendriks, T.H.B.: Finding Robust Solutions for Product Design Problems. European Journal of Operational Research 92, 28–36 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Hadjihassan, S., Walter, E., Pronzato, L.: Quality Improvement via Optimisation of Tolerance Intervals During the Design Stage. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations, Kluwer Publishers, Dordrecht (1996)Google Scholar
  3. 3.
    Li, M., et al.: A multi-objective genetic algorithm for robust design optimization. In: GECCO Proceedings, pp. 771–778 (2005)Google Scholar
  4. 4.
    Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments - A Survey. IEEE Transactions on Evo. Comp. 9(3) (2005)Google Scholar
  5. 5.
    Tsutsui, S., Ghosh, A.: Genetic Algorithms with a Robust Solution Searching Scheme. IEEE Transaction on Evolutionary Computation 1(3), 201–208 (1997)CrossRefGoogle Scholar
  6. 6.
    Loughlin, D.H., Ranjithan, S.: The Neighborhood constraint method: A Genetic Algorithm-Based Multiobjective Optimization Technique. In: Bäck, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms, July 1997, pp. 666–673. Morgan Kaufmann, San Mateo (1997)Google Scholar
  7. 7.
    Rocco, C.: A hybrid approach based on evolutionary strategies and interval arithmetic to perform robust designs. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 623–628. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Moore, R.: Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1979)zbMATHGoogle Scholar
  9. 9.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  10. 10.
    Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (1992)zbMATHGoogle Scholar
  11. 11.
    Schwefel, H.P., Back, T.: Evolution Strategies I: Variants and their computational implementation. In: Periaux, J., Winter, G. (eds.) Genetic Algorithm in Engineering and Computer Science, John Wiley & Sons, Chichester (1995)Google Scholar
  12. 12.
    Kursawe, F.: Towards Self-Adapting Evolution Strategies. In: Tzeng, G., Yu, P. (eds.) Proc. Of the Tenth International Conference on Multiple Criteria Decision Making, Taipei (1992)Google Scholar
  13. 13.
    Michalewicz, Z.: Genetic Algorithms + Structures Dates = Evolution Programs. Second Edition. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Spence, R., Singh, S.: Tolerance Design of Electronic Circuits. Addison-Wesley, Wokingham (1988)Google Scholar
  15. 15.
    Saltelli, A., Chang, K., Scott, M.: Sensitivity Analysis. John Wiley & Sons, Chichester (2000)zbMATHGoogle Scholar
  16. 16.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Luis Pierluissi
    • 1
  • Claudio M. Rocco S.
    • 1
  1. 1.Universidad Central de Venezuela, Facultad de Ingeniería, Apartado Postal 47937, Los Chaguaramos, CaracasVenezuela

Personalised recommendations