Multiple Sequence Alignment with Evolutionary-Progressive Method

  • Paweł Kupis
  • Jacek Mańdziuk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4431)

Abstract

A new evolutionary-progressive method for Multiple Sequence Alignment problem is proposed. The method efficiently combines flexibility of evolutionary approach with speed and accuracy of progressive technique. The results show that the hybrid method is an interesting alternative for purely genetic or purely progressive approaches.

References

  1. 1.
    Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1(4), 337–348 (1994)CrossRefGoogle Scholar
  2. 2.
    Carrillo, H., Lipman, D.J.: The multiple sequence alignment problem in biology. SIAM Journal on Applied Mathematics 48(5), 1073–1082 (1988)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)CrossRefGoogle Scholar
  4. 4.
    Zhu, M.-J., Hu, G.-W., Zheng, Q.-L., Peng, H.: Multiple sequence alignment using minimum spanning tree. In: Proc. 4th International Conference on Machine Learning, Guangzhou, pp. 3352–3356 (2005)Google Scholar
  5. 5.
    Chaichoompu, K., Kittitornkun, S., Tongsima, S.: MT-ClustalW: Multithreading Multiple Sequence Alignment. In: Proc. International Parallel and Distributed Processing Symposium, IPDPS (2006)Google Scholar
  6. 6.
    Notredame, C., Higgins, D., Heringa, J.: T-coffee: A novel method for multiple sequence alignment. Journal of Molecular Biology 302, 205–217 (2000)CrossRefGoogle Scholar
  7. 7.
    Zhang, C., Wong, A.K.C.: A genetic algorithm for multiple molecular sequence alignment. Computer Application in the Biosciences 13(6), 565–581 (1997)Google Scholar
  8. 8.
    Thomsen, R., Fogel, G.B., Krink, T.: Improvement of Clustal-Derived Sequence Alignments with Evolutionary Algorithms. In: Proc. The 2003 Congress on Evolutionary Algorithms, vol. 1, pp. 312–319 (2003)Google Scholar
  9. 9.
    Liu, L., Huo, H., Wang, B.: Aligning multiple sequences by genetic algorithm. In: Proc. International Conference on Communications, Circuits and Systems (ICCCAS’04), vol. 2, pp. 994–998 (2004)Google Scholar
  10. 10.
    Zhang, G.-Z., Huang, D.-S.: Aligning Multiple Protein Sequence by An Improved Genetic Algorithm. In: Proc. 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1179–1183 (2004)Google Scholar
  11. 11.
    Abdesslem, L., Soham, M., Mohamed, B.: Multiple Sequence Alignment by Quantum Genetic Algorithm. In: Proc. International Parallel and Distributed Processing Symposium, IPDPS (2006)Google Scholar
  12. 12.
    Myers, E.W., Miller, W.: Optimal alignments in linear space. Bioinformatics 4(1), 11–17 (1988)CrossRefGoogle Scholar
  13. 13.
    Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res. 24(8), 1515–1524 (1996)CrossRefGoogle Scholar
  14. 14.
    Chenna, R., et al.: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31(13), 3497–3500 (2003)CrossRefGoogle Scholar
  15. 15.
    Thompson, J.D., Plewniak, F., Poch, O.: A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res. 27(13), 2682–2690 (1999)CrossRefGoogle Scholar
  16. 16.
    Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: Latest Developments of the Multiple Sequence Alignment Benchmark. PROTEINS: Structure, Function, and Bioinformatics 61, 127–136 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Paweł Kupis
    • 1
  • Jacek Mańdziuk
    • 1
  1. 1.Faculty of Mathematics and Information Science, Warsaw University of Technology, Plac Politechniki 1, 00-661, WarsawPoland

Personalised recommendations