Improving the Quality of the Pareto Frontier Approximation Obtained by Semi-elitist Evolutionary Multi-agent System Using Distributed and Decentralized Frontier Crowding Mechanism

  • Leszek Siwik
  • Marek Kisiel-Dorohinicki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4431)


The paper presents one of additional mechanisms called distributed frontier crowding which can be introduced to the Semi-Elitist Evolutionary Multi Agent System—selEMAS and which can significantly improve the quality of obtained Pareto frontier approximation. The preliminary experimental comparative studies are based on a typical multi-objective problem presenting the most important features of the proposed approach.


Pareto Frontier Elitist Action Elitist Agent Pareto Frontier Approximation Multiple Objective Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coello Coello, C.A., Toscano, G.: Multiobjective structural optimization using a micro-genetic algorithm. Structural and Multidisciplinary Optimization 30(5), 388–403 (2005)CrossRefGoogle Scholar
  2. 2.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  3. 3.
    Drezewski, R., Siwik, L.: Co-evolutionary multi-agent system with sexual selection mechanism for multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computations, CEC2006, July 2006, pp. 769–776. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  4. 4.
    Dreżewski, R., Siwik, L.: Multi-objective optimization using co-evolutionary multi-agent system with host-parasite mechanism. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 871–878. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Fonseca, C., Fleming, P.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Genetic Algorithms: Proceedings of the Fifth International Conference, pp. 416–423. Morgan Kaufmann, San Francisco (1993)Google Scholar
  6. 6.
    Kisiel-Dorohinicki, M.: Agent-oriented model of simulated evolution. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Siwik, L., Kisiel-Dorohinicki, M.: Balancing of production lines: evolutionary, agent-based approach. In: Proceedings of Conference on Management and Control of Production and Logistics, pp. 319–324 (2004)Google Scholar
  8. 8.
    Siwik, L., Kisiel-Dorohinicki, M.: Semi-elitist Evolutionary Multi-agent System for Multiobjective Optimization. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 831–838. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Socha, K., Kisiel-Dorohinicki, M.: Agent-based evolutionary multiobjective optimisation. In: Proc. of the 2002 Congress on Evolutionary Computation, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Leszek Siwik
    • 1
  • Marek Kisiel-Dorohinicki
    • 1
  1. 1.Department of Computer Science, AGH University of Science and Technology, KrakówPoland

Personalised recommendations