Skip to main content

Brain Connectivity and the Spread of Epileptic Seizures

  • Chapter

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajmone–Marsan C (1972). Focal electrical stimulation. In: Purpura DP, Penny JK, Tower D, Woodbury DM, Walker R (eds) Experimental models of epilepsy: A manual for the laboratory worker. Raven Press, New York, pp. 147–172.

    Google Scholar 

  • Babb TL, Pretorius JK, Kupfer WR, Crandall PH (1989). Glutamate decarboxylase–immunoreactive neurons are preserved in human epileptic hippocampus. J. Neurosci. 9, 2562–2574.

    Google Scholar 

  • Babb TL, Wilson CL, Isokawaakesson M (1987). Firing patterns of human limbic neurons during stereoencephalography (SEEG) and clinical temporal–lobe seizures. Electroencephal. Clin. Neurophysiol. 66:467–482.

    Google Scholar 

  • Baumgartner C, Lindinger G, Ebner A, Aull S, Serles W, Olbrich A, Lurger S, Czech T, Burgess R, Lüders H (1995). Propagation of interictal epileptic activity in temporal–lobe epilepsy. Neurology 45: 118–122.

    Google Scholar 

  • Beaulieu C, Allen PS (1994). Water diffusion in the giant axon of the squid: Implications for diffusion–weighted MRI of the nervous system. Magn. Reson. Med. 31: 394–400.

    Google Scholar 

  • Beaulieu C, Kisvarday Z, Somoygi P, Cynader M, Cowey A (1992). Quantitative distribution of GABA–immunopositive and –immunonegative neurons and synapses in the monkey striate cortex (Area 17). Cerebral Cortex 2: 295–309.

    Google Scholar 

  • Beggs JM, Klukas J and Chen W (2007). Connectivity and dynamics in local cortical networks. This volume.

    Google Scholar 

  • Beggs JM, Plenz D (2003). Neuronal avalanches in neocortical circuits. J. Neurosci. 23: 11167–11177.

    Google Scholar 

  • Bragin A, Engel J Jr, Wilson CL, Fried I, Buzaki G (1999). High–frequency oscillations in human brain. Hippocampus 9: 137–142.

    Google Scholar 

  • Bragin A, Mody I, Wilson CL, Engel J Jr (2002). Local generation of fast ripples in epileptic brain. J. Neurosci. 22: 2012–2021.

    Google Scholar 

  • Breakspear M and Jirsa VK (2007). Neuronal dynamics and brain connectivity. This volume.

    Google Scholar 

  • Bressloff PC, Coombes S (2002). Synchronization of synaptically coupled neural oscillators. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer-Verlag, New York, pp. 83–114.

    Google Scholar 

  • Buser P, Bancaud J (1983). Unilateral connections between amygdala and hippocampus in man: A study of epileptic patient with depth electrodes. Electroencephal. Clin. Neurophysiol. 55: 1–12.

    Google Scholar 

  • Buser P, Bancaud J, Talairach J (1972). Electrophysiological studies of the limbic system with multiple multilead stereotaxic electrodes in epileptic patients. In: Somjen GC (ed). Neurophysiology studied in man. Excerpta Medica, Amsterdam, pp. 112–125.

    Google Scholar 

  • Buzsaki G (1986). Hippocampal sharp waves: Their origin and significance. Brain Res. 398: 242–252.

    Google Scholar 

  • Buzsaki G (1989). A two–stage model of memory trace formation: A role for “noisy” brain sites. Neuroscience 31: 551–570.

    Google Scholar 

  • Buzsäki G, Czopf J, Kondakor I, Bjorklund A, Gage FH (1987). Cellular activity of intracerebrally transplanted hippocampus during behavior. Neuroscience 22: 871–883.

    Google Scholar 

  • Buzsäki G and Traub RD (1997). Physiological basis of EEG activity. In: Engel J, Pedley TA (eds). Epilepsy: A comprehensive textbook, Volume 1. Lippincott–Raven, New York, pp. 819–830.

    Google Scholar 

  • Cabrera JL, Milton JG (2002). On–off intermittency in a human balancing task. Phys. Rev. Lett. 89: 158702.

    Google Scholar 

  • Cabrera JL, Bormann R, Eurich C, Ohira T, Milton J (2004). State–dependent noise and human balance control. Fluctuation Noise Lett. 4: L107–L117.

    Google Scholar 

  • Campbell SA (2007). Time delays in neural systems. This volume.

    Google Scholar 

  • Cerf R, Hassan E, Ouasdad EHE, Kahane P (2004). Criticality and synchrony of fluctuations in rhythmical brain activity: pretransitional effects in epileptic patients. Biol. Cybern. 90: 239–255.

    MATH  Google Scholar 

  • Chen JWY, O’Farrell AM, Toga AW (2000). Optical intrinsic signal imaging in a rodent seizure model. Neurology 55: 312–315.

    Google Scholar 

  • Chervin RD, Pierce PA, Connors BW (1988). Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J. Neurophysiol. 60: 1695–1713.

    Google Scholar 

  • Chialvo DR, Bak P (1999). Learning from mistakes. Neuroscience 90: 1137–1148.

    Google Scholar 

  • Chkhenkeli SA, Chkhenkeli IS (1997). Effect of Therapeutic Stimulation of Nucleus Caudatus on Epileptic Electrical Activity of Brain in Patients with Intractable Epilepsy. Stereotactic Funct. Neurosurg. 69: 221–224

    Google Scholar 

  • Chkhenkeli SA (2002). Direct deep brain stimulation: First steps towards the feedback control of seizures. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer-Verlag, New York, pp. 249–262.

    Google Scholar 

  • Chkhenkeli SA, Milton J (2002). Dynamic epileptic systems versus static epileptic foci? In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer-Verlag, New York, pp. 25–36.

    Google Scholar 

  • Chkhenkeli SA, Sramka M, Lortkipanidze GS, Rakviashili TN, Bregvadze ES, Magalashvili GE, Gagoshidze TS, Chkhenkeli IS (2004). Electrophysiological effects and clinical results of direct brain simulation for intractable epilepsy. Clin. Neurol. Neurosurg. 106: 318–329.

    Google Scholar 

  • Chiel HJ, Beer RD (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20: 553–557.

    Google Scholar 

  • Chu PH, Milton JG, Cowan JD (1994). Connectivity and the dynamics of integrate–and–fire neural networks. Int. J. Bifurc. Chaos 4: 237–243.

    MATH  Google Scholar 

  • Cole BJ (1991). Is anilmal behavior chaotic? Evidence from the activity of ants. Proc. Roy. Soc. London B 244: 253–259.

    Google Scholar 

  • Cooper R, Winter AL, Crow HJ, Walter WG (1965). Comparison of subcortical, cortical and calp activity using chronically indwelling electrodes in man. Electroencephal. Clin. Neurophys. 18: 217–228.

    Google Scholar 

  • Darvas F and Leahy RM (2007). Functional imaging of brain activity and connectivity with MEG. This volume.

    Google Scholar 

  • Dominguez LG, Wennberg RA, Gaetz W, Cheyne D, Snead OC, Velazquez JLP (2005). Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. J. Neurosci. 25: 8077–8084.

    Google Scholar 

  • Ebersole JS, Milton J (2002). The electroencephalogram (EEG): A measure of neural synchrony. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer-Verlag, New York, pp. 51–68.

    Google Scholar 

  • Ebersole JS, Pacia SV (1996). Localization of temporal lobe foci by ictal EEG patterns. Epilepsia 37: 386–399.

    Google Scholar 

  • Emerson RG, Turner CA, Pedley TA, Walczak TS, Fergione M (1995). Propagation patterns of temporal spikes. Electroencephal. Clin. Neurophysiol. 94: 338–348.

    Google Scholar 

  • Engel J Jr (1990). Functional explorations of the human epileptic brain and their therapeutic implications. Electroencephal. Clin. Neurophysiol. 76: 296–316.

    Google Scholar 

  • Eurich CW, Hermann JM, Ernst UA (2002). Finite–size effects of avalanche dynamics. Phys. Rev. E 66: 066137.

    Google Scholar 

  • Farley BG (1965). A neuronal network model and the “slow potential” of electro–physiology. Comp. Biomed. Res. 2: 265–294.

    Google Scholar 

  • Ferree TC, Nunez PL (2006). Primer on electroencephalography for functional connectivity. This volume.

    Google Scholar 

  • Fountas KN, Smith JR, Murro AM, Politsky J, Park YD, Jenkins PD (2005). Implantation of a closed–loop stimulation in the management of medically refractory fiocal epilepsy: A technical note. Stereo Funct. Neurosurg. 83: 153–158.

    Google Scholar 

  • Fox SS, Norman RJ (1968). Functional congruence: An index of neural homogeneity and a new measure of brain activity. Science 159: 1257–1259.

    Google Scholar 

  • Friedrich R, Fuchs A, Haken H (1991). Spatio–temporal EEG patterns. In: Haken H, Köpchen HP (eds) Synergetics of rhythms. Springer–Verlag, Berlin, pp. 119–128.

    Google Scholar 

  • Fuchs A (2007). Beamforming and its applications to brain connectivity. This volume.

    Google Scholar 

  • Fuchs A, Friedrich R, Haken H, Lehmann D (1987). Spatio–temporal analysis of multichannel EEG patterns. In: Haken H (ed) Computational systems – natural and artificial. Springer–Verlag, Berlin, pp. 74–83.

    Google Scholar 

  • Gluckman BJ, Nguyen H, Weinstein SL, Schiff SJ (2001). Adaptive electric field control of epileptic seizures. J. Neurosci. 21: 590–600.

    Google Scholar 

  • Gotman J (1983). Measurement of small time differences between EEG channels: Method and application to epileptic seizure propgation. Electroencephal. Clin. Neurophysiol. 56: 501–514.

    Google Scholar 

  • Guyton AG (1976). Textbook of Medical Physiology. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Haglund MM (1997). Optical imaging. In: Engel J, Pedley TA (eds). Epilepsy: A comprehensive textbook, Volume 1. Lippincott–Raven, New York, pp. 1073–1079.

    Google Scholar 

  • Haglund MM, Ojemann GA, Hochman DW (1992). Optical imaging of epileptiform activity from human cortex. Nature (London) 358: 668–671.

    Google Scholar 

  • Haas KZ, Sperber EF, Moshe SL, Stanton PK (1996). Kainic acid–induced seizures enhance dentate gyrus inhibition by downregulation of GABA(B) receptors. J. Neurosci. 16: 4250–4260.

    Google Scholar 

  • Horsley V (1892). Remarks on ten consecutive cases of operations upon the brain and cranial cavity to illustrate the details and safety of the method employed. Brit. Med. J. 1: 693–696.

    Google Scholar 

  • Horwitz B and Husain FT (2007). Simulation framework for large–scale brain systems. This volume.

    Google Scholar 

  • Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J–Y (2004). Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24: 9897–9902.

    Google Scholar 

  • Iijima T, Witter MP, Ichikawa M, Tominaga T, Kajiwara R, Matsumoto G (1996). Entorhinal–hippocampal interactions revealed by real–time imagine. Science 272: 1176–1179.

    Google Scholar 

  • Jentzen KJ and Kelso JAS (2007). Neural coordination dynamics of human sensorimotor behavior: A review. This volume.

    Google Scholar 

  • Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J (2006). High–frequency oscillations during focal seizures. Brain 129: 1593–1608.

    Google Scholar 

  • Kaminski M (2007). Multichannel data analysis in biomedical research. This volume.

    Google Scholar 

  • Kelso JAS (1995). The self–organization of brain and behavior. The MIT Press, Cambridge, Ma.

    Google Scholar 

  • Konigsmark BW, Abdullah AF, French JD (1958). Cortical spread of after–discharge in the monkey. Electroenceph. Clin. Neurophysiol. 10: 687–696.

    Google Scholar 

  • Kreindler A (1965). Experimenal epilepsy. Elsevier, New York.

    Google Scholar 

  • Ktonas PY, Mallart R (1991). Estimation of time–delay between EEG signals for epileptic focus localization – statistical error considerations. Electroencephal. Clin. Neurophysiol. 78: 105–110.

    Google Scholar 

  • Kuebler D, Tanouye MA (2000). Modifications of seizure susceptibility in Drosphila. J. Neurophysiol. 83: 998–1009.

    Google Scholar 

  • Langdon CG (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42: 12–37.

    Google Scholar 

  • Lasota A, Mackey MC (1994). Chaos, fractals, and noise: Stochastic aspects of dynamics. Spriner-Verlag, New York.

    MATH  Google Scholar 

  • Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WRS, Bare M, Cysyk B, Krauss G, Gordon B (1999). Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53: 2073–2081.

    Google Scholar 

  • Linkenkaer–Hansen K, Nikouline VV, Palva JM, Llmoniemi RJ (2001). Long–range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21: 1370–1377.

    Google Scholar 

  • Lüders H (2004). Deep brain stimulation and epilepsy. Martin Dunitz, New York.

    Google Scholar 

  • Matsumoto M, Saito S, Ohmine I (2002). Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature (London) 416: 409–413.

    Google Scholar 

  • Mihaliuk E, Sakurai T, Chirila R, Showalter K (2002). Feedback stabilization of unstable propagating waves. Phys. Rev. E 65: 065602.

    Google Scholar 

  • Milton J (1996). Dynamics of small neural populations. American Mathematical Society, Providence, Rhode Island.

    MATH  Google Scholar 

  • Milton JG (2000). Epilepsy: multistability in a dynamic disease. In: Walleczek J (ed) Self–organized biological dynamics & nonlinear control. Cambridge University Press, New York, pp. 374–386.

    Google Scholar 

  • Milton J (2002). Medically intractable epilepsy. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Spriner-Verlag, New York, pp. 1–14.

    Google Scholar 

  • Milton J (2002). Insights into seizure propagation from axonal conduction times. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer-Verlag, New York, pp. 15–23.

    Google Scholar 

  • Milton JG, Chu PH, Cowan JD (1993). Spiral waves in integrate–and–fire neural networks. In: Hanson SJ, Cowan JD, Giles CL (eds) Advances in neural information processing systemsm, Volume 5. Morgan Kaufmann, San Mateo, pp. 1001–1007.

    Google Scholar 

  • Milton JG, Galley WC (1986). Evidence for heterogeneity in DNA–associated solvent mobility from acridine phosphorescence spectra. Biopolymers 25: 1673–1684.

    Google Scholar 

  • Milton JG, Gotman J, Remillard GM, Andermann F (1987). Timing of seizure recurrence in adult epileptic patients. Epilepsia 28: 471–478.

    Google Scholar 

  • Milton J, Jung P (2002). Epilepsy as a dynamic disease. Springer–Verlag, New York.

    Google Scholar 

  • Milton J, Mundel T, Van der Heiden U, Spire J-P, Cowan J (1995). Traveling activity waves. In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp. 994–997.

    Google Scholar 

  • Milton JG, Foss J, Hunter JD, Cabrera JL (2004). Controlling neurological diseases at the edge of stability. In: Pardaols PM, Sackellaris JC, Carney PR, Iasemidis LD (eds). Quantitative neurosciences: Models, algorithms, diagnostics, and therapeutic devices. Kluwer Academic Publishers, Boston, pp. 117–143.

    Google Scholar 

  • Milton JG, Mackey MC (2000). Neural ensemble coding and statistical periodicity: Speculations on the operation of the mind’s eye. J. Physiol. (Paris) 94: 489–503.

    Google Scholar 

  • Moreau L, Sontag E (2003). Balancing at the border of instability. Phys. Rev. E 68: 020901

    MathSciNet  Google Scholar 

  • Mormann F, Kruez T, Andrzejak RG, David P, Lehnertz, Elger CE (2003). Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 53: 173–185.

    Google Scholar 

  • Motamedi GK, Lesser RP, Miglioretti, Mizuno–Matsumoto Y, Gordon B, Webber WRS, Jackson DC, Sepkuty JP, Crone NE (2002). Optimizing parameters for terminating cortical afterdischarges with pulse stimuation. Epilepsia 43: 836–846.

    Google Scholar 

  • Netoff TI, Schiff SJ (2002). Decreased neuronal synchronization during experimental seizures. J. Neurosci. 22: 7297–7307.

    Google Scholar 

  • Novak JL, Wheeler BC (1989). Two–dimensional current source density analysis of propagation delays for components of epiletiform bursts in rat hippiocampal slices. Brain Res. 497: 223–230.

    Google Scholar 

  • Nunez PL (1981). Electric fields of the brain: The neurophysiology of EEG. Oxford University Press, New York.

    Google Scholar 

  • Nunez PL (1995). Neocortical dynamics and human EEG rhythms. Oxford University Press, New York.

    Google Scholar 

  • Nunez PL, Srinivasan R (2006). A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin. Neurophysiol. 117: 2424–2435.

    Google Scholar 

  • Pacia SV, Ebersole JS (1997). Intracranial EEG substartes of scalp ictal patterns from temporal lobe foci. Epilepsia 38: 642–654.

    Google Scholar 

  • Parish LM, Worrell GA, Cranstoun SD, Stead SM, Pennell P, Litt B (2004). Long–range temporal correlations in epileptiform and non–epileotgenic human hippocampus. Neuroscience 125: 1069–1076.

    Google Scholar 

  • Penfield W, Jasper HH (1954). Epilepsy and the Functional Anatomy of the brain. Little Brown, Bostoin.

    Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P (1988) Cortical structure and electrogenesis. In: Basar E (ed) Dynamics of sensory and cognitive processing by the brain. Springer–Verlag, New York, pp 123–129.

    Google Scholar 

  • Petsche H, Prohaska O, Rappelsberger P, Vollmer R, Kaiser A (1974). Cortical seizure patterns in multidimensional view: Information–content of equipotential maps. Epilepsia 15: 439–463.

    Google Scholar 

  • Pikovksy A, Rosenbaum M and Kürths J (2003). Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, Cambridge, Ma.

    Google Scholar 

  • Rinzel J, Terman D, Wang X-J, Ermentrout B (1998). Propagating patterns in large-scale inhibitory neuronal networks. Science 279: 1351–1355.

    Google Scholar 

  • Romer AS (1967). The Vertebrate Body, 3rd edition. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Rosenblum M, Pikovsky A, Kurths J (1996). Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76: 1804–1807.

    Google Scholar 

  • Lopes da Silva F, van Rotterdam A (1982). Biophysical aspects of EEG and magnetoencephalogram generation. In: Niedermeyer E, Lopes da Silva F (eds). Electro–encephalography: Basic principles, clinical applications, and related fields. Urban & Schwarzenberg, Baltimore, pp. 29–41.

    Google Scholar 

  • Rugg–Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS (2001). Diffusion tensor mapping of cryptogenic and acquired partial epilepsies. Brain 124: 627–636.

    Google Scholar 

  • Sakurai T, Mihaliuk E, Chirila F, Showalter K (2002). Design and control of wave propagation patterns in excitable media. Science 296: 2009–2012.

    Google Scholar 

  • Schiff SJ, Colella D, Jacyna GM, Hughes E, Creekmore JW, Marshall A, Bozek–Kuzmicki M, Benke G, Gaillard WD, Conry J, Weinstein SR (2000). Brain chirps: spectrographic signatures of epileptic seizures. Clin. Neurophysiol. 111: 953–958.

    Google Scholar 

  • Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Ben–Jacob E (2002). Long term behavior of lithographically prepared in vitro neuronal networks. Phys. Rev. Lett. 88: 118102.

    Google Scholar 

  • So P, Barreto E, Josic K, Sander E, Schiff SJ (2002). Limits to the experimental detection of nonlinear synchrony. Phys. Rev. E 65: 046225.

    Google Scholar 

  • Steriade M, Contreras D (1998). Spike–wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J. Neurophysiol. 80: 1439–1455.

    Google Scholar 

  • Steriade M, Amzica F (1994). Dynamic coupling among neocortical neurons during evoked and spontaneous spike–wave seizure activity. J. Neurophysiol. 72: 2051–2069.

    Google Scholar 

  • Stevens CF (1965). How cortical interconnectedness varies with network size. Neural Comp. 1: 473–479.

    Google Scholar 

  • Sutherling WW, Barth DS (1989). Neocortical propagation in temporal–lobe spike foci on magnetoencephalography and electroencephalography. Ann. Neurol. 25: 373–381.

    Google Scholar 

  • Sutula T, Cascino G, Cavazos J, Paranda I (1989). Mossy fiber synaptic reorganization in the epileptic human temporal–lobe. Ann. Neurol. 26: 321–330.

    Google Scholar 

  • Tao JX, Ray A, Hawes–Ebersole S, Ebersole JS (2005). Intracranial EEG substartes of scalp EEG interictal spikes. Epilepsia 46: 669–676.

    Google Scholar 

  • Towle VL, Ahmad F, Kohrman M, Hecox K, Chkhenkeli S (2002). Electrocorticographic coherence patterns of epileptic seizures. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Spriner-Verlag, New York, pp. 69–81.

    Google Scholar 

  • Traub RD, Miles R (1991). Neuronal networks of the hippocampus. Cambridge University Press, Cambridge, Ma.

    Google Scholar 

  • Traub RD, Miles R, Wong RKS (1989). Model of rhythmic population oscillation in the hippocampal slice. Science 243: 1319–1325.

    Google Scholar 

  • Traub RD, Whittington MA, Buhl EH, LeBeau FE, Biddig A, Boyd S, Cross H, Baldeweg T (2001). A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42: 153–170.

    Google Scholar 

  • van Drongelen W, Lee HG, Hereld M, Chen ZY, Elsen FP, Stevens RL (2005). Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans. Neural Sys. Rehab. Engn. 13: 236–241.

    Google Scholar 

  • Weir B (1964). Spikes–wave from stimulation of reticular cortex. Arch. Neurol. 11: 209–218.

    Google Scholar 

  • Winfree AT (2002). Are cardiac waves relevant to epileptic wave propagation? In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer-Verlag, New York, pp. 165–188.

    Google Scholar 

  • Worrell GA, Cranstoun SD, Echauz J, Litt B (2002). Evidence for self–organized criticality in human epileptic hippocampus. Neuroreport 13: 2017–2021.

    Google Scholar 

  • Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B (2004). High–frequency oscillations and seizure generation in neocortical epilepsy. Brain 127: 1496–1506.

    Google Scholar 

  • Wright JJ (1999). Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex. Biol. Cybern. 81: 131–147.

    MATH  Google Scholar 

  • Wyler AR, Ojemann GA, Ward AA Jr (1982). Neurons in human epileptic cortex: Correlation between unit and EEG activity. Ann. Neurol. 11: 301–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milton, J.G., Chkhenkeli, S.A., Towle, V.L. (2007). Brain Connectivity and the Spread of Epileptic Seizures. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_17

Download citation

Publish with us

Policies and ethics