Skip to main content

Modeling and Optimal Control of Hybrid Rigidbody Mechanical Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4416))

Included in the following conference series:

Abstract

A measure differential inclusion (MDI) based modeling approach for rigidbody mechanical systems will be introduced, that can exhibit autonomous or controlled mode transitions, accompanied by discontinuities on velocity and acceleration level. The hybrid optimal control necessitates the consideration of an uncommon concept of control, namely, controls of unbounded, impulsive and set-valued type. Examples to manipulators and wheeled robots are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alart, P., Curnier, A.: A mixed formulation of frictional contact problems prone to newton-like solution methods. Computer Methods in Applied Mechanics and Engineering 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, J.-P., et al.: Impulse Differential Inclusions: A Viability Approach to Hybrid Systems. IEEE Trans. on Automatic Control 47, 2–20 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamic, and constraints. Automatica 35, 407–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bengea, S.C., DeCarlo, R.A.: Optimal Control of switching systems. Automatica 41, 11–27 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borelli, F., et al.: Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41, 1709–1721 (2005)

    Article  Google Scholar 

  6. Branicky, M.S., Borkar, V.S., Mitter, S.M.: A unified framework for hybrid control: Model and optimal theory. IEEE Transactions on Automatic Control 43, 31–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brogliato, B.: Non-smooth Impact Mechanics. Lecture Notes in Control and Information Sciences. Springer, Heidelberg (1996)

    Google Scholar 

  8. Brogliato, B., et al.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems and Control Letters 55, 45–51 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM Classics in Applied Mathematics. Wiley, New York (1983)

    MATH  Google Scholar 

  10. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  11. De Schutter, B., Heemels, W.P.M.H., Bemporad, A.: On the equivalence of linear complementarity problems. Operations Research Letters 30, 211–222 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferrari-Trecate, G., et al.: Analysis of discrete-time piecewise affine and hybrid systems. Automatica 38, 2139–2146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heemels, W.P.M.H., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37, 1085–1091 (2001)

    Article  MATH  Google Scholar 

  14. Glocker, C.: Set-Valued Force Laws, Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    MATH  Google Scholar 

  15. Glocker, C.: On Frictionless Impact Models in Rigid-Body Systems. Phil. Trans. Royal Soc. Lond. A359, 2385–2404 (2001)

    MathSciNet  Google Scholar 

  16. Glocker, C., Pfeiffer, F.: Multiple Impacts with Friction in Rigid Multibody Systems. Nonlinear Dynamics 7, 471–497 (1995)

    Article  MathSciNet  Google Scholar 

  17. Glocker, C.: The Geometry of Newtonian Impacts with Global Dissipation Index for Moving Sets. In: Proc. of the Int. Conf. on Nonsmooth/ Nonconvex Mechanics, Thessaloniki, pp. 283–290 (2002)

    Google Scholar 

  18. Miller, B.M., Bentsman, J.: Optimal control problems in hybrid systems with active singularities. Nonlinear Analysis 65, 999–1017 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Moreau, J.J.: Quadratic programming in mechanics: Dynamics of one-sided constraints. SIAM Journal of Control 4, 153–158 (1966)

    Article  MathSciNet  Google Scholar 

  20. Moreau, J.J.: Bounded Variations in time. In: Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Non-smooth Mechanics, pp. 1–74. Birkhäuser, Basel (1988)

    Google Scholar 

  21. Moreau, J.J.: Unilateral Contact and Dry Friction in Finite Freedom Dynamics. In: Non-smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, Springer, Wien (1988)

    Google Scholar 

  22. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman-Verlag, Berlin (1988)

    MATH  Google Scholar 

  23. Potočnik, B., et al.: Hybrid Modelling and optimal control of a multiproduct Batch plant. Control Engineering Practice 12, 1127–1137 (2004)

    Article  Google Scholar 

  24. Rockafellar, R.T.: Convex Analysis, Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1970)

    Google Scholar 

  25. Shahid Shaikh, M., Caines, P.E.: On the optimal control of hybrid systems: Optimization of trajectories, switching times, and location schedules. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 466–481. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Yunt, K., Glocker, C.: Trajectory Optimization of Hybrid Mechanical Systems using SUMT. In: IEEE Proc. of Advanced Motion Control, Istanbul, pp. 665–671. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  27. Yunt, K., Glocker, C.: Time-Optimal Trajectories of a Differential-Drive Robot. In: Proceedings of the 2005 ENOC Conference, Eindhoven, Netherlands (2005)

    Google Scholar 

  28. Yunt, K., Glocker, C.: A combined continuation and penalty method for the determination of optimal hybrid mechanical trajectories. In: IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, Nanjing, China, 2006. IUTAM Bookseries, vol. 2, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Yunt, K.: Trajectory Optimization of structure-variant mechanical Systems. In: Proc. on of Int. Workshop on Variable Structure Systems, Alghero, Italy, pp. 298–303 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Bemporad Antonio Bicchi Giorgio Buttazzo

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Yunt, K., Glocker, C. (2007). Modeling and Optimal Control of Hybrid Rigidbody Mechanical Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71493-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71493-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71492-7

  • Online ISBN: 978-3-540-71493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics