Skip to main content

Influence of Biofilms on Colloid Mobility in the Subsurface

  • Chapter
Colloidal Transport in Porous Media

Abstract

Transport processes in subsurface environments are determined by complex interactions between the soil matrix and dissolved as well as particulate substances. Biofilms play an important role in the transport of colloids in the subsurface, since biofilms cover the solid soil matrix and hence influence the interaction of colloids with the soil matrix. Consequently, biofilms can influence the mobility of colloids and colloid-bound contaminants either by deposition of colloids within the biofilm matrix, by remobilization of bound colloids, and/or by co-elution of colloids together with detaching biofilm compartments. Further, biofilm organisms can take part in the degradation of colloids or colloid-bound contaminants as well as in colloid generation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison D (2003) The biofilm matrix. Biofouling 19(2): 139–150

    Article  Google Scholar 

  • Anderson RT, Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. In: Press JP (ed) Advances in microbial ecology vol 15. New York, pp 289–333

    Google Scholar 

  • Bachofen R, Ferloni P, Flynn I (1998) Microorganisms in the subsurface. Microbiol Res 153(1):1–22

    Google Scholar 

  • Balkwill DL, Murphy EM, Fair DM, Ringelberg DB, White DC (1997) Microbial communities in high and low recharge environments: Implications for microbial transport in the vadose zone. Microb Ecol 35:156–171

    Article  Google Scholar 

  • Becker MW, Collins SA, Metge DW, Harvey RW, Shapiro AM (2004) Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater. J. Contam. Hydrol. 69:195–213

    Article  Google Scholar 

  • Bennett PC, Engel AS (2005) Microbial contributions to karstification. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Micro-organisms and Earth Systems — Advances in Geomicrobiology, SGM Symposium 65. Cambridge University Press Cambridge, pp 3345–3363

    Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Ann Rev Microbiol 43:147–171

    Article  Google Scholar 

  • Beveridge TJ, Korenevsky A, Glasauer S (2002) Biomineralization by bacteria. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol 2. John Wiley & Sons, Inc, New York, pp 670–681

    Google Scholar 

  • Bhattacharjee S, Ryan JN, Elimelech M (2002) Virus transport in physically and geochemically heterogeneous subsurface porous media. J Contam Hydrol 57:161–187

    Article  Google Scholar 

  • Bolster CH, Mills AL, Hornberger GM, Herman JS (2001) Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces. J Contam Hydrol 50:287–305

    Article  Google Scholar 

  • Bouwer E, Rijnaarts HHM, Cunningham AB, Gerlach R (2000) Biofilms in porous media. In: Bryers JD (ed) Biofilms II: Process analysis and applications. Wiley-Liss, pp 123–158

    Google Scholar 

  • Bunn RA, Magelky RD, Ryan JN, Elimelech M (2002) Mobilization of natural colloids from an iron oxide coated sand aquifer: effect of pH and ionic strength. Environ Sci Technol 36:314–322

    Article  Google Scholar 

  • Camesano TA, Unice KM, Logan BE (1999) Blocking and ripening of colloids in porous media and their implications for bacterial transport. Coll Surf A-Physicochem Eng Asp 160:291–308

    Article  Google Scholar 

  • Chamberlain AHL (1997) Matrix polymers: the key to biofilm processes. In: Wimpenny J, Handley PS, Gilbert P, Lappin-Scott H, Jones M (eds) Biofilms: Community Interactions and Control. BioLine, Cardiff, pp 41–46

    Google Scholar 

  • Characklis WG, Turakhia MH, Zelver N (1990) Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley, New York, pp 265–340

    Google Scholar 

  • Chen JY, Ko CH, Bhattacharjee S, Elimelech M (2001) Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport. Coll Surf A-Physicochem Eng Asp 191:3–15

    Article  Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley, New York, pp 93–130

    Google Scholar 

  • Cunningham AB, Characklis WG, Abedeen F, Crawford D (1991) Influence of biofilm accumulation on porous media hydrodynamics. Environ Sci Technol 25:1305–1311

    Article  Google Scholar 

  • Davis CJ, Eschenazi E, Papadopoulos KD (2001) Combined effects of Ca2+ and humic acid on colloid transport through porous media. Coll Polym Sci 280(1):52–58

    Article  Google Scholar 

  • De Jonge LW, Kjaergaard C, Moldrup P (2004) Colloids and colloid-facilitated transport of contaminants in soils. Vadose Zone J 3:321–325

    Google Scholar 

  • Dignac M-F, Urbain V, Rybacki D, Bruchet A, Snidaro D, Scribe P (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Wat Sci Technol 38:45–53

    Article  Google Scholar 

  • Dong H, Rothmel R, Onstott TC, Fuller ME, DeFlaun MF, Streger SH, Dunlap R, Fletcher M (2002) Simultaneous transport of two bacterial strains in intact cores from Oyster, Virginia: biological effects and numerical modeling. Appl Environ Microbiol 68:2120–2132

    Article  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  Google Scholar 

  • Dworkin M (1996) Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60(1):70–102

    Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, New York

    Google Scholar 

  • Elimelech M, Chen JY, Kuznar ZA (2003) Particle deposition onto solid surfaces with micropatterned charge heterogeneity: the “hydrodynamic bump” effect. Langmuir 19(17):6594–6597

    Article  Google Scholar 

  • Elimelech M, Nagai M, Ko CH, Ryan JN (2000) Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ Sci Technol 34:2143–2148

    Article  Google Scholar 

  • Fang Y, Logan BE (1999) Bacterial transport in gas-sparged porous medium. J Environ Eng-ASCE 125(7):668–673

    Article  Google Scholar 

  • Feldmann M (1997) Geomicrobial processes in the subsurface: a tribute to Johannes Neher’s work. FEMS Microbiol Rev 20:181–189

    Article  Google Scholar 

  • Ferris FG (2000) Microbe-metal interactions in sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 121–126

    Google Scholar 

  • Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice Hall, New York

    Google Scholar 

  • Flemming H-C (1995) Sorption sites in biofilms. Wat. Sci. Technol. 32(8):27–33

    Article  Google Scholar 

  • Flemming H-C, Leis A (2002) Sorption properties of biofilms. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol 5. John Wiley & Sons, Inc., New York, pp 2958–2967

    Google Scholar 

  • Flemming H-C, Wingender J (2002) Extracellular polymeric substances (EPS): Structural, ecological and technical aspects. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol 4. John Wiley & Sons, Inc., New York, pp 1223–1231

    Google Scholar 

  • Flemming H-C, Wingender J (2003a) The crucial role of extracellular polymeric substances in biofilms. In: Bishop PL, Wilderer PA (eds) Biofilms in Wastewater Treatment: An Interdisciplinary Approach. IWA Publishing, London, pp 178–210

    Google Scholar 

  • Flemming H-C, Wingender J (2003b) Biofilms. In: Steinbüchel A (ed) Biopolymers, General Aspects and Special Applications, vol 10. Wiley-VCH, Weinheim, pp 209–245

    Google Scholar 

  • Flemming H-C, Schmitt J, Marshall KC (1996) Sorption properties of biofilms. In: Calmano W, Förstner U (eds) Sediments and Toxic Substances: Environmental Effects and Ecotoxicity. Springer, Berlin, pp 115–157

    Google Scholar 

  • Flemming H-C, Leis A, Strathmann M, Leon-Morales CF (2005) The matrix reloaded-an interactive milieu. In: McBain A, Allison D, Pratten J, Spratt D, Upton M, Verran J (eds) Biofilms: Persistence and Ubiquity. The Biofilm Club, Manchester, pp 67–81

    Google Scholar 

  • Frølund B, Griebe T, Nielsen PH (1995) Enzymatic-activity in the activated-sludge floc matrix. Appl Environ Microbiol 43(4):755–761

    Google Scholar 

  • Geesey GG (1982) Microbial exopolymers: ecological and economic considerations. ASM News 48:9–14

    Google Scholar 

  • Gillow J (2004) Microbial transformation of the chemical association and mobility of actinides in contaminated soil. CEMS Graduate Student Conference, Center for Environmental Molecular Science

    Google Scholar 

  • Grolimund D, Borkovec M, Bartmettler K, Sticher H (1996) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ Sci Technol 30:3118–3123

    Article  Google Scholar 

  • Grolimund D, Elimelech M, Borkovec M (2001) Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Coll Surf A-Physicochem Eng Asp 191:179–188

    Article  Google Scholar 

  • Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32:3562–3569

    Article  Google Scholar 

  • Gross MJ, Albinger O, Jewett DG, Logan BE, Bales RC, Arnold RG (1995) Measurement of bacterial collision efficiencies in porous media. Wat Res 29(4):1151–1158

    Article  Google Scholar 

  • Horwath WR (2002) Biomass: soil microbial biomass. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol 2. John Wiley & Sons, Inc, New York, pp 663–670

    Google Scholar 

  • Hozalski RM, Dai X (2001) Investigation of factors affecting the removal of Cryptosporidium parvum oocysts in porous media filters. WRC Technical Report 142:17–24

    Google Scholar 

  • Jahn A, Nielsen PH (1995) Extraction of extracellular polymeric substances (EPS) from biofilms using a cation exchange resin. Wat Sci Technol 32(8):157–164

    Article  Google Scholar 

  • Jewett DG, Hilbert TA, Logan BE, Arnold RG, Bales RC (1995) Bacterial transport in laboratory columns and filters: influence of ionic strength and pH on collision efficiency. Wat Res 29(7):1673–1680

    Article  Google Scholar 

  • Johnson PR, Sun N, Elimelech M (1996) Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ Sci Technol 30:3284–3293

    Article  Google Scholar 

  • Kieft TL, Phelps TJ (1997) Life in the slow lane: activities of microorganisms in the subsurface. In: Amy PS, Haldeman, DL (eds) The microbiology of the terrestial deep subsurface. Lewis publishers, New York, pp 356

    Google Scholar 

  • Körstgens V, Flemming HC, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Wat Sci Technol 43(6):49–57

    Google Scholar 

  • Kretzschmar R, Barmettler K, Grolimund D, Yan Y-d, Borkovec M, Sticher H (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Res 33(5):1129–1137

    Article  Google Scholar 

  • Kretzschmar R, Sticher H (1998) Colloid transport in natural porous media: influence of surface chemistry and flow velocity. Phys Chem Earth 23(2):133–139

    Article  Google Scholar 

  • Langley S, Beveridge TJ (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can J Microbiol 45(7) 616–622

    Article  Google Scholar 

  • Lemmer H, Roth D, Schade M (1994) Population density and enzyme activities of heterotrophic bacteria in sewer biofilms and activated sludge. Wat Res 28:1341–1346

    Article  Google Scholar 

  • Leon-Morales CF, Leis AP, Strathmann M, Flemming H-C (2004) Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability. Wat Res 38:3614–3626

    Article  Google Scholar 

  • Li Q, Logan BE (1999) Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Wat Res 33(4):1090–1100

    Article  Google Scholar 

  • Liu D, Johnson PR, Elimelech M (1995) Colloid deposition dynamics in flow through porous media: role of electrolyte concentration. Environ Sci Technol 29:2963–2973

    Article  Google Scholar 

  • Ludvigsen L, Albrechtsen H-J, Heron G, Bjerg PL, Christensen TH (1998) Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark). J Contam Hydrol 33:273–291

    Article  Google Scholar 

  • McCarthy JF, McKay LD (2004) Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J 3:326–337

    Google Scholar 

  • Nielsen PH, Jahn A, Palmgren R (1997) Conceptual model for production and composition of exopolymers in biofilms. Wat Sci Technol 36(1):11–19

    Article  Google Scholar 

  • Okabe S, Kuroda H, Watanabe Y (1998) Significance of biofilm structure on transport of inert particulates into biofilms. Wat Sci Technol 38(8–9):163–170

    Article  Google Scholar 

  • Pang L, Close ME, Noonan MJ, Flintoft MJ, van den Brink P (2005) A Laboratory study of bacteria-facilitated cadmium transport in alluvial gravel aquifer media. J Environ Qual 34(1):237–247

    Article  Google Scholar 

  • Powelson DK, Mills AL (2001) Transport of Escherichia coli in sand columns with constant and changing water contens. J Environ Qual 30:238–245

    Article  Google Scholar 

  • Redman JA, Walker SL, Elimelech M (2004) Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ Sci Technol 38:1777–1785

    Article  Google Scholar 

  • Ren J, Packman AI, Welty C (2000) Correlation of colloid collision efficiency with hydraulic conductivity of silica sands. Water Resour Res 36(9):2493–2500

    Article  Google Scholar 

  • Rijnaarts HHM (1994) Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media. PhD thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Rijnaarts HHM, Norde W, Lyklerna J, Zehnder AJB (1999) DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Coll Surf B-Biointerfaces 14:179–195

    Article  Google Scholar 

  • Rittmann BE (1993) The significance of biofilms in porous media. Water Resour. Res 29(7):2195–2202

    Article  Google Scholar 

  • Rogers B, Logan BE (2000) Bacterial transport in NAPL-contaminated porous media. J Environ Eng-ASCE 126(7):657–666

    Article  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Coll Surf A-Physicochem Eng Asp 107:1–56

    Article  Google Scholar 

  • Ryan JN, Elimelech M, Ard RA, Harvey RW, Johnson PR (1999) Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ Sci Technol 33:63–73

    Article  Google Scholar 

  • Saiers JE, Lenhart JJ (2003) Ionic-strength effects on colloid transport and interfacial reactions in partially saturated porous media. Water Resour Res 39(9):1256

    Article  Google Scholar 

  • Sar P, Kazy SK, Asthana RK, Singh SP (1998) Nickel uptake by Pseudomonas aeruginosa: role of modifying factors. Curr Microbiol 37:306–311

    Article  Google Scholar 

  • Schmitt J, Nivens D, White DC, Flemming H-C (1995) Changes of biofilm properties in response to sorbed substances-an FTIR-ATR study. Wat Sci Technol 32(8):149–155

    Article  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  Google Scholar 

  • Sharp RR, Cunningham AB, Komlos J, Billmayer J (1999) Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects. Wat Sci Technol 39(7):195–201

    Article  Google Scholar 

  • Skoog DA, West DM, Holler FJ (1996) Fundamentals of analytical chemistry, 7th edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Song L, Elimelech M (1993) Calculation of particle deposition rate under unfavourable particle-surface interactions. J Chem Soc Farad Trans 89(18):3443–3452

    Article  Google Scholar 

  • Stal LJ, Caumette P (1994) Microbial mats; structure, development and environmental significance. Springer, Berlin

    Google Scholar 

  • Stoodley P, Boyle JD, DeBeer D, Lappin-Scott HM (1999) Evolving perspectives of biofilm structure. Biofouling 14(1):75–90

    Article  Google Scholar 

  • Sutherland IW (1984) Microbial exopolysaccharides-their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol 10:173–201

    Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147 (Pt 1):3–9

    Google Scholar 

  • Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K-E (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2005) Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21:841–852

    Article  Google Scholar 

  • van Benthum WAJ, van Loosdrecht MCM, Tijhuis L, Heijnen JJ (1995) Solids retention time in heterotrophic and nitrifying biofilms in a biofilm airlift suspension reactor. Wat Sci Technol 32(8):53–60

    Article  Google Scholar 

  • Vandevivere P, Baveye P (1992) Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Appl Environ Microbiol 58(5):1690–1698

    Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc. Natl Acad Sci USA 95:6578–6583

    Article  Google Scholar 

  • Wingender J (1990) Interactions of alginates with exoenzymes. In: Gacesa P, Russell NJ (eds) Pseudomonas infections and alginates. Chapman and Hall, London, New York, Tokyo, Melburne, Madras, pp 160–180

    Google Scholar 

  • Wingender J, Jaeger K-E (2002) Extracellular enzymes in biofilms. In: Bitton G (ed) Encyclopedia of Environmental Microbiology, vol 3. John Wiley & Sons, Inc., New York, pp 1207–1223

    Google Scholar 

  • Wingender J, Neu TR, Flemming H-C (1999a) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming H-C (eds) Microbial extracellular polymeric substances. Springer, Berlin, pp 1–19

    Google Scholar 

  • Wingender J, Grobe S, Fiedler S, Flemming H-C (1999b) The effect of extracellular polysaccharides on the resistance of Pseudomonas aeruginosa to chlorine and hydrogen peroxide. In: Keevil CW, Godfree A, Holt D, Dow CS (eds) Biofilms in the aquatic environment. Royal Society of Chemistry, Cambridge, pp 93–100

    Google Scholar 

  • Wingender J, Strathmann M, Rode A, Leis A, Flemming H-C (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods in Enzymology 336: 302–314

    Article  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1994) The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol 40:331–340

    Article  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterisation of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223

    Article  Google Scholar 

  • Yao KM, Habibian MT, O’Melia CR (1971) Water and waste water filtration-Concepts and applications. Environ Sci Technol 5:1105–1112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strathmann, M., Leon-Morales, C.F., Flemming, HC. (2007). Influence of Biofilms on Colloid Mobility in the Subsurface. In: Frimmel, F.H., Von Der Kammer, F., Flemming, HC. (eds) Colloidal Transport in Porous Media. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71339-5_6

Download citation

Publish with us

Policies and ethics