Abstract
The question of equivalence has long vexed research in concurrency, leading to many different denotational- and bisimulation-based approaches; a breakthrough occurred with the insight that tests expressed within the concurrent framework itself, based on a special “success action”, yield equivalences that make only inarguable distinctions.
When probability was added, however, it seemed necessary to extend the testing framework beyond a direct probabilistic generalisation in order to remain useful. An attractive possibility was the extension to multiple success actions that yielded vectors of real-valued outcomes.
Here we prove that such vectors are unnecessary when processes are finitary, that is finitely branching and finite-state: single scalar outcomes are just as powerful. Thus for finitary processes we can retain the original, simpler testing approach and its direct connections to other naturally scalar-valued phenomena.
Keywords
- Markov Decision Process
- Scalar Testing
- Parallel Composition
- Visible Action
- Static Resolution
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Chapter PDF
References
Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic and Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)
Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 2nd edn. Springer, Heidelberg (1999)
Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)
De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)
Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proc. of the Real-Time Systems Symposium (RTSS ’90), pp. 278–287. IEEE Computer Society Press, Los Alamitos (1990)
He, J., Seidel, K., McIver, A.K.: Probabilistic models for the guarded command language. Science of Computer Programming 28, 171–192 (1997)
Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic and probabilistic processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994)
Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be characterized by simulations. Theoretical Computer Science 282(1), 33–51 (2002)
Kozen, D.: A probabilistic PDL. Jnl. Comp. Sys. Sciences 30(2), 162–178 (1985)
Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)
McIver, A.K., Morgan, C.C.: Games, probability and the quantitative μ-calculus qMu. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 292–310. Springer, Heidelberg (2002)
McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic Systems. Tech. Mono. Comp. Sci. Springer, Heidelberg (2005)
Morgan, C.C., McIver, A.K., Seidel, K.: Probabilistic predicate transformers. ACM Trans. on Programming Languages and Systems 18(3), 325–353 (1996)
Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)
Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)
Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)
Stoelinga, M.I.A., Vaandrager, F.W.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., et al. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 407–418. Springer, Heidelberg (2003)
Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Proc. FOCS ’85, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)
Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proc. IFIP TC6/WG6.1 Twelfth Intern. Symp. on Protocol Specification, Testing and Verification. IFIP Transactions, vol. C-8, pp. 47–61. North-Holland, Amsterdam (1992)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Deng, Y., van Glabbeek, R., Morgan, C., Zhang, C. (2007). Scalar Outcomes Suffice for Finitary Probabilistic Testing. In: De Nicola, R. (eds) Programming Languages and Systems. ESOP 2007. Lecture Notes in Computer Science, vol 4421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71316-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-71316-6_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71314-2
Online ISBN: 978-3-540-71316-6
eBook Packages: Computer ScienceComputer Science (R0)
