Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

European Symposium on Programming

ESOP 2007: Programming Languages and Systems pp 363–378Cite as

  1. Home
  2. Programming Languages and Systems
  3. Conference paper
Scalar Outcomes Suffice for Finitary Probabilistic Testing

Scalar Outcomes Suffice for Finitary Probabilistic Testing

  • Yuxin Deng1,
  • Rob van Glabbeek1,2,
  • Carroll Morgan1 &
  • …
  • Chenyi Zhang1,2 
  • Conference paper
  • 982 Accesses

  • 16 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4421)

Abstract

The question of equivalence has long vexed research in concurrency, leading to many different denotational- and bisimulation-based approaches; a breakthrough occurred with the insight that tests expressed within the concurrent framework itself, based on a special “success action”, yield equivalences that make only inarguable distinctions.

When probability was added, however, it seemed necessary to extend the testing framework beyond a direct probabilistic generalisation in order to remain useful. An attractive possibility was the extension to multiple success actions that yielded vectors of real-valued outcomes.

Here we prove that such vectors are unnecessary when processes are finitary, that is finitely branching and finite-state: single scalar outcomes are just as powerful. Thus for finitary processes we can retain the original, simpler testing approach and its direct connections to other naturally scalar-valued phenomena.

Keywords

  • Markov Decision Process
  • Scalar Testing
  • Parallel Composition
  • Visible Action
  • Static Resolution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic and Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)

    Google Scholar 

  2. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  4. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proc. of the Real-Time Systems Symposium (RTSS ’90), pp. 278–287. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  6. He, J., Seidel, K., McIver, A.K.: Probabilistic models for the guarded command language. Science of Computer Programming 28, 171–192 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  8. Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic and probabilistic processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994)

    Google Scholar 

  9. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be characterized by simulations. Theoretical Computer Science 282(1), 33–51 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Kozen, D.: A probabilistic PDL. Jnl. Comp. Sys. Sciences 30(2), 162–178 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)

    Google Scholar 

  12. McIver, A.K., Morgan, C.C.: Games, probability and the quantitative μ-calculus qMu. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 292–310. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  13. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic Systems. Tech. Mono. Comp. Sci. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  14. Morgan, C.C., McIver, A.K., Seidel, K.: Probabilistic predicate transformers. ACM Trans. on Programming Languages and Systems 18(3), 325–353 (1996)

    CrossRef  Google Scholar 

  15. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  16. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)

    MATH  Google Scholar 

  17. Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)

    Google Scholar 

  18. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  19. Stoelinga, M.I.A., Vaandrager, F.W.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., et al. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 407–418. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  20. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Proc. FOCS ’85, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  21. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proc. IFIP TC6/WG6.1 Twelfth Intern. Symp. on Protocol Specification, Testing and Verification. IFIP Transactions, vol. C-8, pp. 47–61. North-Holland, Amsterdam (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Comp. Sci. and Eng., University of New South Wales, Sydney, Australia

    Yuxin Deng, Rob van Glabbeek, Carroll Morgan & Chenyi Zhang

  2. National ICT Australia, Locked Bag 6016, Sydney, NSW 1466, Australia

    Rob van Glabbeek & Chenyi Zhang

Authors
  1. Yuxin Deng
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rob van Glabbeek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Carroll Morgan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Chenyi Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Rocco De Nicola

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Deng, Y., van Glabbeek, R., Morgan, C., Zhang, C. (2007). Scalar Outcomes Suffice for Finitary Probabilistic Testing. In: De Nicola, R. (eds) Programming Languages and Systems. ESOP 2007. Lecture Notes in Computer Science, vol 4421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71316-6_25

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71316-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71314-2

  • Online ISBN: 978-3-540-71316-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature