Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

European Symposium on Programming

ESOP 2007: Programming Languages and Systems pp 300–315Cite as

  1. Home
  2. Programming Languages and Systems
  3. Conference paper
Precise Fixpoint Computation Through Strategy Iteration

Precise Fixpoint Computation Through Strategy Iteration

  • Thomas Gawlitza1 &
  • Helmut Seidl1 
  • Conference paper
  • 1110 Accesses

  • 41 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4421)

Abstract

We present a practical algorithm for computing least solutions of systems of equations over the integers with addition, multiplication with positive constants, maximum and minimum. The algorithm is based on strategy iteration. Its run-time (w.r.t. the uniform cost measure) is independent of the sizes of occurring numbers. We apply our technique to solve systems of interval equations. In particular, we show how arbitrary intersections as well as full interval multiplication in interval equations can be dealt with precisely.

Keywords

  • Feasible Solution
  • Complete Lattice
  • Interval Analysis
  • Full Multiplication
  • Strategy Iteration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Bjorklund, H., Sandberg, S., Vorobyov, S.: Complexity of Model Checking by Iterative Improvement: the Pseudo-Boolean Framework . In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 381–394. Springer, Heidelberg (2004)

    Google Scholar 

  2. Cochet-Terrasson, J., Gaubert, S., Gunawardena, J.: A Constructive Fixed Point Theorem for Min-Max Functions. Dynamics and Stability of Systems 14(4), 407–433 (1999)

    CrossRef  MathSciNet  Google Scholar 

  3. Costan, A., et al.: A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)

    Google Scholar 

  4. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Second Int. Symp. on Programming, pp. 106–130. Dunod, Paris (1976)

    Google Scholar 

  5. Cousot, P., Cousot, R.: Comparison of the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. BIGRE (JTASPEFL ’91, Bordeaux) 74, 107–110 (1991)

    Google Scholar 

  6. Gawlitza, T., et al.: Polynomial Exact Interval Analysis Revisited. Technical report, TU München (2006)

    Google Scholar 

  7. Hoffman, A.J., Karp, R.M.: On Nonterminating Stochastic Games. Management Sci. 12, 359–370 (1966)

    CrossRef  MathSciNet  Google Scholar 

  8. Howard, R.: Dynamic Programming and Markov Processes. Wiley, New York (1960)

    MATH  Google Scholar 

  9. Knuth, D.E.: A Generalization of Dijkstra’s algorithm. Information Processing Letters (IPL) 6(1), 1–5 (1977)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Megiddo, N.: On the Complexity of Linear Programming. In: Bewley, T. (ed.) Advances in Economic Theory: 5th World Congress, pp. 225–268. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. Miné, A.: Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)

    Google Scholar 

  12. Miné, A.: Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  13. Puri, A.: Theory of Hybrid and Discrete Systems. PhD thesis, University of California, Berkeley (1995)

    Google Scholar 

  14. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  15. Seidl, H.: Least and Greatest Solutions of Equations over \(\cal N\). Nordic Journal of Computing (NJC) 3(1), 41–62 (1996)

    MathSciNet  Google Scholar 

  16. Su, Z., Wagner, D.: A Class of Polynomially Solvable Range Constraints for Interval Analysis Without Widenings. Theor. Comput. Sci (TCS) 345(1), 122–138 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Vöge, J., Jurdzinski, M.: A Discrete Strategy Improvement Algorithm for Solving Parity Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  18. Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs. Theoretical Computer Science (TCS) 158(1-2), 343–359 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. TU München, Institut für Informatik, I2, 85748 München, Germany

    Thomas Gawlitza & Helmut Seidl

Authors
  1. Thomas Gawlitza
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Helmut Seidl
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Rocco De Nicola

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Gawlitza, T., Seidl, H. (2007). Precise Fixpoint Computation Through Strategy Iteration. In: De Nicola, R. (eds) Programming Languages and Systems. ESOP 2007. Lecture Notes in Computer Science, vol 4421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71316-6_21

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71316-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71314-2

  • Online ISBN: 978-3-540-71316-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature