Skip to main content

Varying Coefficient GARCH Models

  • Chapter
  • First Online:
Handbook of Financial Time Series

Abstract

This paper offers a new method for estimation and forecasting of the volatility of financial time series when the stationarity assumption is violated. We consider varying–coefficient parametric models, such as ARCH and GARCH, whose coefficients may arbitrarily vary with time. This includes global parametric, smooth transition, and change–point models as special cases. The method is based on an adaptive pointwise selection of the largest interval of homogeneity with a given right–end point, which is obtained by a local change–point analysis.We construct locally adaptive volatility estimates that can perform this task and investigate them both from the theoretical point of view and by Monte Carlo simulations. Additionally, the proposed method is applied to stock–index series and shown to outperform the standard parametric GARCH model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, T. G. and Bollerslev, T. (1998): Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39, 885-905.

    Article  Google Scholar 

  • Andreou, E. and Ghysels, E. (2002): Detecting multiple breaks in financial market volatility dynamics. Journal of Applied Econometrics 17, 579-600.

    Article  Google Scholar 

  • Andreou, E. and Ghysels, E. (2006): Monitoring disruptions in financial markets. Journal of Econometrics 135, 77-124.

    Article  MathSciNet  Google Scholar 

  • Andrews, D. W. K. (1993): Tests for parameter instability and structural change with unknown change point. Econometrica 61, 821-856.

    Article  MATH  MathSciNet  Google Scholar 

  • Awartani, B. M. A. and Corradi, V. (2005): Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of Forecasting 21, 167-183.

    Article  Google Scholar 

  • Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O. (1996): Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74, 3-30.

    Article  MATH  MathSciNet  Google Scholar 

  • Bollerslev, T. (1986): Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, Z., Fan, J. and Li, R. (2000): Efficient estimation and inferences for varying-coefficient models. Journal of the American Statistical Association 95, 888-902.

    Article  MATH  MathSciNet  Google Scholar 

  • Charles, A. and Darné, O. (2006): Large shocks and the September 11th terrorist attacks on international stock markets. Economic Modelling 23, 683-698.

    Article  Google Scholar 

  • Chen, J. and Gupta, A. K. (1997): Testing and locating variance changepoints with application to stock prices. Journal of the American Statistical Association 92, 739-747.

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng, M.-Y., Fan, J. and Spokoiny, V. (2003): Dynamic nonparametric filtering with application to volatility estimation. In: Akritas, M. G., Politis, D. N. (Eds.): Recent Advances and Trends in Nonparametric Statistics, 315-333. Elsevier, North Holland.

    Chapter  Google Scholar 

  • Chu, C. S. (1995): Detecting parameter shift in GARCH models. Econometric Review 14, 241-266.

    Article  MATH  Google Scholar 

  • Diebold, F. X. and Inoue, A. (2001): Long memory and regime switching. Journal of Econometrics 105, 131-159.

    Article  MATH  MathSciNet  Google Scholar 

  • Ding, Z., Granger, C. W. J. and Engle, R. F. (1993): A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 83-106.

    Article  Google Scholar 

  • Engle, R. F. (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987-1008.

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, J. and Zhang, W. (1999): Additive and varying coefficient models - statistical estimation in varying coefficient models. The Annals of Statistics 27, 1491-1518.

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, J., Yao, Q. and Cai, Z. (2003): Adaptive varying-coefficient linear models. Journal of the Royal Statistical Society, Series B 65, 57-80.

    Article  MATH  MathSciNet  Google Scholar 

  • Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993): On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48, 1779-1801.

    Article  Google Scholar 

  • Hansen, B. and Lee, S.-W. (1994): Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator. Econometric Theory 10, 29-53.

    Article  MathSciNet  Google Scholar 

  • Härdle, W., Herwatz, H. and Spokoiny, V. (2003): Time inhomogeneous multiple volatility modelling. Journal of Financial Econometrics 1, 55-99.

    Article  Google Scholar 

  • Herwatz, H. and Reimers, H. E. (2001): Empirical modeling of the DEM/USD and DEM/JPY foreign exchange rate: structural shifts in GARCH-models and their implications. SFB 373 Discussion Paper 2001/83 Humboldt-Universität zu Berlin, Germany.

    Google Scholar 

  • Hillebrand, E. (2005): Neglecting parameter changes in GARCH models. Journal of Econometrics 129, 121-138.

    Article  MathSciNet  Google Scholar 

  • Kokoszka, P. and Leipus, R. (1999): Testing for Parameter Changes in ARCH Models. Lithuanian Mathematical Journal 39, 231-247.

    Article  MathSciNet  Google Scholar 

  • Kokoszka, P. and Leipus, R. (2000): Change-point estimation in ARCH models. Bernoulli 6, 513-539.

    Article  MATH  MathSciNet  Google Scholar 

  • Lin, S.-J. and Yang, J. (2000): Testing shifts in financial models with conditional heteroskedasticity: an empirical distribution function approach. Research Paper 2000/30 University of Technology, Sydney, Australia.

    Google Scholar 

  • Mercurio, D. and Spokoiny, V. (2004): Statistical inference for time-inhomogeneous volatility models. The Annals of Statistics 32, 577-602.

    Article  MATH  MathSciNet  Google Scholar 

  • Mikosch, T. and Stărică, C. (1999): Change of structure in financial time series, long range dependence and the GARCH model. Manuscript, Department of Statistics, University of Pennsylvania. See http://www.math.chalmers.se/ starica/chp.pdf or http://citeseer.ist.psu.edu/mikosch99change.html.

  • Mikosch, T. and Stărică, C. (2003): Non-stationarities in financial time series, the long-range dependence, and IGARCH effects. The Review of Economics and Statistics 86, 378-390.

    Google Scholar 

  • Mikosch, T. and Stărică, C. (2004): Changes of structure in financial time series and the GARCH model. Revstat Statistical Journal 2, 41-73.

    MATH  MathSciNet  Google Scholar 

  • Nelson, D. B. (1990): ARCH models as diffusion approximations. Journal of Econometrics 45, 7-38.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson, D. B. (1991): Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 347-370.

    Article  MATH  MathSciNet  Google Scholar 

  • Nocedal, J. and Wright, S. J. (1999): Numerical optimization Springer, Heidelberg.

    Book  MATH  Google Scholar 

  • Pesaran, M. H. and Timmermann, A. (2004): How costly is it to ignore breaks when forecasting the direction of a time series? International Journal of Forecasting 20, 411-425.

    Article  Google Scholar 

  • Polzehl, J. and Spokoiny, V. (2004): Varying coefficient GARCH versus local constant volatility modeling: comparison of the predictive power. WIAS Discussion Paper 977 Berlin, Germany.

    Google Scholar 

  • Polzehl, J. and Spokoiny, V. (2006): Propagation-separation approach for local likelihood estimation. Probabability Theory and Related Fields 135, 335-362.

    Article  MATH  MathSciNet  Google Scholar 

  • Sentana, E. (1995): Quadratic ARCH Models. The Review of Economic Studies 62), 639-661.

    Article  MATH  Google Scholar 

  • Spokoiny, V. (1998): Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. The Annals of Statistics 26, 1356-1378.

    Article  MATH  MathSciNet  Google Scholar 

  • Spokoiny, V. and Chen, Y. (2007): Multiscale local change-point detection with with applications to Value-at-Risk. The Annals of Statistics to appear.

    Google Scholar 

  • Stapf, J. and Werner, T. (2003): How wacky is DAX? The changing structure of German stock market volatility. Discussion Paper 2003/18 Deutsche Bundesbank, Germany.

    Google Scholar 

  • Taylor, S. J. (1986): Modeling financial time series. Wiley, Chichester.

    Google Scholar 

  • Teyssiere, G. and Kokoszka, P. (2005): Change-point detection in GARCH models: asymptotic and bootstrap tests. Journal of Business and Economic Statistics to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Čížek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Čížek, P., Spokoiny, V. (2009). Varying Coefficient GARCH Models. In: Mikosch, T., Kreiß, JP., Davis, R., Andersen, T. (eds) Handbook of Financial Time Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71297-8_7

Download citation

Publish with us

Policies and ethics