Evaluating Volatility and Correlation Forecasts

  • Andrew J. PattonEmail author
  • Kevin SheppardEmail author


This chapter considers the problems of evaluation and comparison of volatility forecasts, both univariate (variance) and multivariate (covariance matrix and/or correlation). We pay explicit attention to the fact that the object of interest in these applications is unobservable, even ex post, and so the evaluation and comparison of volatility forecasts often rely on the use of a “volatility proxy”, i.e. an observable variable that is related to the latent variable of interest. We focus on methods that are robust to the presence of measurement error in the volatility proxy, and to the conditional distribution of returns.


Mean Square Error Loss Function Option Price Conditional Variance Data Generate Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T.G. and Bollerslev, T. (1998): Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review 39, 885–905.CrossRefGoogle Scholar
  2. Andersen, T.G., Benzoni, L. and Lund, J. (2002): An empirical investigation of continuous-time equity return models. Journal of Finance 57, 1239–1284.CrossRefGoogle Scholar
  3. Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2003): Modeling and Forecasting Realized Volatility. Econometrica 71, 3–29.CrossRefMathSciNetGoogle Scholar
  4. Andersen, T.G., Bollerslev, T. and Meddahi, N. (2005): Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities. Econometrica 73, 279–296.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Andersen, T.G., Bollerslev, T., Christoffersen, P.F. and Diebold, F.X. (2006a): Volatility and correlation forecasting. In: Elliott G., Granger C., Timmermann A. (Eds.): Handbook of Economic Forecasting. North Holland, Amsterdam.Google Scholar
  6. Andersen, T.G., Bollerslev, T. and Diebold, F.X. (2006b): Parametric and nonparametric volatility measurement. In: Hansen L.P., Aït-Sahalia Y. (Eds.): Handbook of Financial Econometrics, forthcoming. North-Holland, Amsterdam.Google Scholar
  7. Arellano, M. (2003): Panel Data Econometrics. Oxford University Press, Oxford.zbMATHCrossRefGoogle Scholar
  8. Barndorff-Nielsen, O.E. and Shephard, N. (2004): Econometric analysis of realised covariation: high frequency based covariance, regression and correlation in financial economics. Econometrica 73, 885–925.CrossRefMathSciNetGoogle Scholar
  9. Bates, D.S. (2003): Empirical option pricing: a retrospection. Journal of Econometrics 116, 387–404.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Bierens, H.J. (1990): A consistent conditional moment test of functional form. Econometrica 58, 1443–1458.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Bierens, H.J. and Ploberger, W. (1997): Asymptotic theory of integrated conditional moment tests. Econometrica 65, 1129–1152.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Bollerslev, T. and Wright, J.H. (2001): High-frequency data, frequency domain inference, and volatility forecasting. The Review of Economics and Statistics 83, 596–602.CrossRefGoogle Scholar
  13. Bollerslev, T., Engle, R.F. and Wooldridge, J.M. (1988): A capital asset pricing model with time-varying covariances. Journal of Political Economy 96, 116–131.CrossRefGoogle Scholar
  14. Campbell, J.Y., Lo, A.W. and MacKinlay, A.C. (1997): The Econometrics of Financial Markets. Princeton University Press, Princeton.zbMATHGoogle Scholar
  15. Chernov, M. (2007): On the role of risk premia in volatility forecasting. Journal of Business and Economic Statistics forthcoming.Google Scholar
  16. Chernov, M., Gallant, A.R., Ghysels, E. and Tauchen, G. (2003): Alternative models for stock price dynamics. Journal of Econometrics 116, 225–257.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Chib, T. (2008): Multivariate stochastic volatility. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 365–400. Springer, New York.Google Scholar
  18. Christensen, K. and Podolskij, M. (2006): Realized range-based estimation of integrated variance. Journal of Econometrics forthcoming.Google Scholar
  19. Christodoulakis, G.A. and Satchell, S.E. (2004): Forecast evaluation in the presence of unobserved volatility. Econometric Reviews 23, 175–198.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Christoffersen, P. (2008): Estimation of value-at-risk. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 752–766. Springer, New York.Google Scholar
  21. Christoffersen, P.F. and Jacobs, K. (2004a): The importance of the loss function in option valuation. Journal of Financial Economics 72, 291–318.CrossRefGoogle Scholar
  22. Christoffersen, P.F. and Jacobs, K. (2004b): Which Garch model for option valuation? Management Science 50, 1204–1221.CrossRefGoogle Scholar
  23. Diebold, F.X. and Mariano, R.S. (1995): Comparing predictive accuracy. Journal of Business & Economic Statistics 13, 253–263.CrossRefGoogle Scholar
  24. Engle, R.F. and Colacito, R. (2006): Testing and valuing dynamic correlations for asset allocation. Journal of Business & Economic Statistics 24, 238–253.CrossRefMathSciNetGoogle Scholar
  25. Engle, R.F. and Manganelli, S. (2004): Caviar: conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics 22, 367–381.CrossRefMathSciNetGoogle Scholar
  26. Ferreira, M.A. and Lopez, J.A. (2005): Evaluating interest rate covariance models within a value-at-risk framework. Journal of Financial Econometrics 3, 126–168.CrossRefGoogle Scholar
  27. Fleming, J., Kirby, C. and Ostdiek, B. (2003): The economic value of volatility timing using “realized” volatility. Journal of Financial Economics 67, 473–509.CrossRefGoogle Scholar
  28. Garcia, R., Ghysels, E. and Renault, E. (2008): The econometrics of option pricing. In: Aït-Sahalia Y., Hansen L.P. (Eds.): Handbook of Financial Econometrics, forthcoming. Elsevier-North Holland, Amsterdam.Google Scholar
  29. Giacomini, R. and White, H. (2006): Tests of conditional predictive ability. Econometrica 74, 1545–1578.zbMATHCrossRefMathSciNetGoogle Scholar
  30. Gibson, M.S. and Boyer, B.H. (1997): Evaluating forecasts of correlation using option pricing, board of Governors of the Federal Reserve System (U.S.).Google Scholar
  31. Gonçalves, S. and Meddahi, N. (2005): Bootstrapping realized volatility, Département de Sciences Économiques, CIREQ and CIRANO Université de Montréal.Google Scholar
  32. Gonźalez-Rivera, G., Lee, T.H. and Mishra, S. (2004): Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting 20, 629–645.CrossRefGoogle Scholar
  33. Griffin, J.E. and Oomen, R.C. (2006): Covariance measurement in the presence of non-synchronous trading and market microstructure noise. Mimeo.Google Scholar
  34. Hansen, P.R. (2005): A test for superior predictive ability. Journal of Business and Economic Statistics 23, 365–380.CrossRefMathSciNetGoogle Scholar
  35. Hansen, P.R. and Lunde, A. (2005): A forecast comparison of volatility models: does anything beat a GARCH(1,1)? Journal of Applied Econometrics 20, 873–889.CrossRefMathSciNetGoogle Scholar
  36. Hansen, P.R. and Lunde, A. (2006a): Consistent ranking of volatility models. Journal of Econometrics 127, 97–121.CrossRefMathSciNetGoogle Scholar
  37. Hansen, P.R. and Lunde, A. (2006b): Realized variance and market microstructure noise. Journal of Business and Economic Statistics 24, 127–218.CrossRefMathSciNetGoogle Scholar
  38. Hansen, P.R., Lunde, A. and Nason, J.M. (2005): Model confidence sets for forecasting models, Federal Reserve Bank of Atlanta, Working Paper 7.Google Scholar
  39. Harvey, A., Ruiz, E. and Shephard, N. (1994): Multivariate stochastic variance models. Review of Economic Studies 61, 247–264.zbMATHCrossRefGoogle Scholar
  40. Hayashi, F. (2000): Econometrics. Princeton University Press.Google Scholar
  41. de Jong, R.M. (1996): The Bierens test under data dependence. Journal of Econometrics 72, 1–32.zbMATHCrossRefMathSciNetGoogle Scholar
  42. Jorion, P. (1995): Predicting volatility in the foreign exchange market. Journal of Finance 50, 507–528.CrossRefGoogle Scholar
  43. Koopman, S.J. (2008): Parameter estimation and practical aspects of modelling stochastic volatility. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 312–344. Springer, New York.Google Scholar
  44. Kuester, K., Mittnik, S. and Paolella, M.S. (2006): Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics 4, 53–89.CrossRefGoogle Scholar
  45. Lopez, J.A. (2001): Evaluating the predictive accuracy of volatility models. Journal of Forecasting 20, 87–109.CrossRefGoogle Scholar
  46. Magnus, J.R. and Neudecker, H. (2002): Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, Chichester.Google Scholar
  47. Marquering, W. and Verbeek, M. (2004): The economic value of predicting stock index returns and volatility. Journal of Financial and Quantitative Analysis 39, 407–429.CrossRefGoogle Scholar
  48. Meddahi, N. (2001): A theoretical comparison between integrated and realized volatilities. Manuscript, Département de Sciences Économiques, CIREQ and CIRANO Université de Montréal. Google Scholar
  49. Mincer, J. and Zarnowitz, V. (1969): The evaluation of economic forecasts. In: Mincer J. (Ed.): Economic Forecasts and Expectations. Columbia University Press.Google Scholar
  50. Newey, W.K. and West, K.D. (1987): A simple, positive definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703–708.zbMATHCrossRefMathSciNetGoogle Scholar
  51. Noh, J., Engle, R.F. and Kane, A. (1994): Forecasting volatility and option prices of the S&P 500 index. Journal of Derivatives 2, 17–30.CrossRefGoogle Scholar
  52. Parkinson, M. (1980): The extreme value method for estimating the variance of the rate of return. The Journal of Business 53, 61–65.CrossRefGoogle Scholar
  53. Patton, A.J. (2006): Volatility forecast comparison using imperfect volatility proxies, Quantitative Finance Research Centre, University of Technology Sydney, Research Paper 175.Google Scholar
  54. Sheppard, K. (2006): Realized covariance and scrambling Univeristy of Oxford.Google Scholar
  55. Silvennoinen, A., Teräsvirta, T. (2008): Multivariate Garch models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 201–229. Springer, New York.Google Scholar
  56. Teräsvirta, T. (2008): An introduction to univariate GARCH. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 17–42. Springer, New York.Google Scholar
  57. Theil, H. (1958): Economic Forecasts and Policy. North-Holland, Rotterdam.Google Scholar
  58. Tse, Y.K. (2000): A test for constant correlations in a multivariate GARCH model. Journal of Econometrics 98, 107–127.zbMATHCrossRefGoogle Scholar
  59. West, K.D. (1996): Asymptotic inference about predictive ability. Econometrica 64, 1067–1084.zbMATHCrossRefMathSciNetGoogle Scholar
  60. West, K.D. (2006): Forecast evaluation. In: Elliott G., Granger C., Timmermann A. (Eds.): Handbook of Economic Forecasting. North Holland, Amsterdam.Google Scholar
  61. West, K.D., Edison, H.J. and Cho, D. (1993): A utility-based comparison of some models of exchange rate volatility. Journal of International Economics 35, 23–45.CrossRefGoogle Scholar
  62. White, H. (1980): A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–838.zbMATHCrossRefMathSciNetGoogle Scholar
  63. White, H. (1996): Estimation, Inference and Specification Analysis. Econometric Society Monographs. Cambridge University Press.Google Scholar
  64. White, H. (2000): A reality check for data snooping. Econometrica 68, 1097–1126.zbMATHCrossRefMathSciNetGoogle Scholar
  65. Zivot, E. (2008): Practical aspects of Garch-modelling. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 112–155. Springer, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Economics and Oxford-Man Institute of Quantitative FinanceUniversity of OxfordUnited Kingdom

Personalised recommendations