Copula–Based Models for Financial Time Series

  • Andrew J. PattonEmail author


This paper presents an overview of the literature on applications of copulas in the modelling of financial time series. Copulas have been used both in multivariate time series analysis, where they are used to characterize the (conditional) cross-sectional dependence between individual time series, and in univariate time series analysis, where they are used to characterize the dependence between a sequence of observations of a scalar time series process. The paper includes a broad, brief, review of the many applications of copulas in finance and economics.


Marginal Distribution Asset Return Tail Dependence Multivariate Time Series Copula Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, C. 2008: Market Risk Analysis, Volume III. Wiley & Sons, London, forthcoming.Google Scholar
  2. Alexander, C. and Chibumba, A. (1997): Multivariate Orthogonal Factor GARCH. Mimeo, University of Sussex.Google Scholar
  3. Alsina, C., Nelsen, R.B. and Schweizer, B. (1993): On the characterization of a class of binary operations on distribution functions. Statistics and Probability Letters 17, 85–89.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Andersen, T.G., Bollerslev, T., Christoffersen, P.F. and Diebold, F.X. (2006): Volatility and Correlation Forecasting. In: Elliott, G., Granger, C.W.J. and Timmermann, A. (Eds.): The Handbook of Economic Forecasting. North Holland, Amsterdam.Google Scholar
  5. Ang, A. and Bekaert, G. (2002): International Asset Allocation with Regime Shifts. Review of Financial Studies 15, 1137–1187.CrossRefGoogle Scholar
  6. Ang, A. and Chen, J. (2002): Asymmetric Correlations of Equity Portfolios. Journal of Financial Economics 63, 443–494.CrossRefGoogle Scholar
  7. Arakelian, V. and Dellaportas, P. (2005): Contagion tests via copula threshold models. Mimeo, University of Crete.Google Scholar
  8. Bartram, S.M., Taylor, S.J. and Wang, Y.-H. (2006): The euro and European financial market dependence. Journal of Banking and Finance forthcoming.Google Scholar
  9. Bae, K.-H., Karolyi, G.A. and Stulz, R.M. (2003): A New Approach to Measuring Financial Contagion. Review of Financial Studies 16, 717–764.CrossRefGoogle Scholar
  10. Bauwens, L., Laurent, S. and Rombouts, J. (2006): Multivariate GARCH Models: A Survey. Journal of Applied Econometrics 21, 79–109.CrossRefMathSciNetGoogle Scholar
  11. Beare, B. (2007): Copula-based mixing conditions for Markov chains. Mimeo, University of Oxford.Google Scholar
  12. Bennett, M.N. and Kennedy, J.E. (2004): Quanto Pricing with Copulas. Journal of Derivatives 12, 26–45.Google Scholar
  13. Bollerslev, T. (1986): Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics 31, 307–327.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Bonhomme, S. and Robin, J.-M. (2004): Modeling Individual Earnings Trajectories using Copulas with an Application to the Study of Earnings Inequality: France, 1990–2002. Mimeo, Université de Paris 1.Google Scholar
  15. Bouyé, E. and Salmon, M. (2002): Dynamic Copula Quantile Regressions and Tail Area Dynamic Dependence in Forex Markets. Mimeo, University of Warwick.Google Scholar
  16. Brendstrup, B. and Paarsch, H.J. (2007): Semiparametric Identification and Estimation in Multi-Object English Auctions. Journal of Econometrics 141, 84–108.CrossRefMathSciNetGoogle Scholar
  17. Breymann, W., Dias, A. and Embrechts, P. (2003): Dependence structures for multivariate high-frequency data in finance. Quantitative Finance 3, 1–16.CrossRefMathSciNetGoogle Scholar
  18. Capéraà, P., Fougères, A.-L. and Genest, C. (1997): A Nonparametric Estimation Procedure for Bivariate Extreme Value Copulas. Biometrika 84, 567–577.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Cappiello, L., Engle, R.F. and Sheppard, K. (2003): Evidence of Asymmetric Effects in the Dynamics of International Equity and Bond Return Covariance. Journal of Financial Econometrics forthcoming.Google Scholar
  20. Carrasco M. and Chen X. (2002): Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 17–39.zbMATHCrossRefMathSciNetGoogle Scholar
  21. Casella, G. and Berger, R.L. (1990): Statistical Inference Duxbury Press, U.S.A.zbMATHGoogle Scholar
  22. Chamberlain, G. (1983): A characterization of the distributions that imply mean-variance utility functions. Journal of Economic Theory 29, 185–201.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Chen, X. and Fan, Y. (2006a): Estimation of copula-based semiparametric time series models. Journal of Econometrics 130, 307–335.CrossRefMathSciNetGoogle Scholar
  24. Chen, X. and Fan, Y. (2006b): Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics 135, 125–154.CrossRefMathSciNetGoogle Scholar
  25. Chen, X., Fan, Y. and Tsyrennikov, V. (2006): Efficient estimation of semiparametric multivariate copula models. Journal of the American Statistical Association 101, 1228–1240.zbMATHCrossRefMathSciNetGoogle Scholar
  26. Cherubini, U. and Luciano, E. (2001): Value at Risk trade-off and capital allocation with copulas. Economic Notes 30, 235–256.CrossRefGoogle Scholar
  27. Cherubini, U., Luciano, E. and Vecchiato, W. (2004): Copula Methods in Finance John Wiley & Sons, England.zbMATHGoogle Scholar
  28. Chollete, L. (2005): Frequent extreme events? A dynamic copula approach. Mimeo, Norwegian School of Economics and Business.Google Scholar
  29. Chollete, L., de la Peña, V. and Lu, C.-C. (2005): Comovement of international financial markets. Mimeo, Norwegian School of Economics and Business.Google Scholar
  30. Christoffersen, P. (2008): Value–at–Risk models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 752–766. Springer Verlag, New York.Google Scholar
  31. Clayton, D.G. (1978): A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65, 141–151.zbMATHCrossRefMathSciNetGoogle Scholar
  32. Coles, S., Heffernan, J. and Tawn, J. (1999): Dependence measures for extreme value analyses. Extremes 2, 339–365.zbMATHCrossRefGoogle Scholar
  33. Cook, R.D. and Johnson, M.E. (1981): A family of distributions for modelling non-elliptically symmetric multivariate data. Journal of the Royal Statistical Society 43, 210–218.zbMATHMathSciNetGoogle Scholar
  34. Corradi V. and Swanson, N.R. (2005): Predictive Density Evaluation. In: Elliott, G., Granger, C.W.J. and Timmermann, A. (Eds.): Handbook of Economic Forecasting. North Holland, Amsterdam.Google Scholar
  35. Darsow, W.F., Nguyen, B. and Olsen, E.T. (1992): Copulas and Markov processes. Illinois Journal of Mathematics 36, 600–642.zbMATHMathSciNetGoogle Scholar
  36. Daul, S., De Giorgi, E., Lindskog, F. and McNeil, A. (2003): The grouped t-copula with an application to credit risk. RISK 16, 73–76.Google Scholar
  37. Demarta, S. and McNeil, A.J. (2005): The t copula and related copulas. International Statistical Review 73, 111–129.zbMATHGoogle Scholar
  38. Denuit, M. and Lambert, P. (2005): Constraints on concordance measures in bivariate discrete data. Journal of Multivariate Analysis 93, 40–57.zbMATHCrossRefMathSciNetGoogle Scholar
  39. Diebold, F.X., Gunther, T. and Tay, A.S. (1998): Evaluating Density Forecasts with Applications to Financial Risk Management. International Economic Review 39, 863–883.CrossRefGoogle Scholar
  40. Diebold, F.X., Hahn, J. and Tay, A.S. (1999): Multivariate Density Forecast Evaluation and Calibration in Financial Risk Management: High Frequency Returns on Foreign Exchange. Review of Economics and Statistics 81, 661–673.CrossRefGoogle Scholar
  41. Duffie, D. (2004): Clarendon Lecture in Finance, mimeo Stanford University.
  42. Embrechts, P. and Höing, A. (2006): Extreme VaR scenarios in higher dimensions. Mimeo ETH Zürich.Google Scholar
  43. Embrechts, P., McNeil, A. and Straumann, D. (2002): Correlation and Dependence Properties in Risk Management: Properties and Pitfalls. In: Dempster, M. (Ed.): Risk Management: Value at Risk and Beyond. Cambridge University Press.Google Scholar
  44. Embrechts, P., Höing, A. and Juri, A. (2003): Using Copulae to bound the Value-at-Risk for functions of dependent risks. Finance & Stochastics 7, 145–167.zbMATHCrossRefGoogle Scholar
  45. Embrechts, P., Furrer, H. and Kaufmann, R. (2008): Different Kinds of Risk. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 729–751. Springer Verlag, New York.Google Scholar
  46. Engle, R.F. (1982): Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK Inflation. Econometrica 50, 987–1007.zbMATHCrossRefMathSciNetGoogle Scholar
  47. Engle, R.F. (2002): Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models. Journal of Business and Economic Statistics 20, 339–350.CrossRefMathSciNetGoogle Scholar
  48. Engle, R.F. and Russell, J.R. (1998): Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica 66, 1127–1162.zbMATHCrossRefMathSciNetGoogle Scholar
  49. Erb, C.B., Harvey, C.R. and Viskanta, T.E. (1994): Forecasting International Equity Correlations. Financial Analysts Journal 50, 32–45.CrossRefGoogle Scholar
  50. Fermanian, J.-D. (2005): Goodness of fit tests for copulas. Journal of Multivariate Analysis 95, 119–152.zbMATHCrossRefMathSciNetGoogle Scholar
  51. Fermanian, J.-D. and Scaillet, O. (2003): Nonparametric estimation of copulas for time series. Journal of Risk 5, 25–54.Google Scholar
  52. Fermanian, J.-D. and Scaillet, O. (2005): Some statistical pitfalls in copula modeling for financial applications. In: Klein, E. (Ed.): Capital Formation, Governance and Banking. Nova Science Publishing.Google Scholar
  53. Fermanian, J.-D. and Wegkamp, M. (2004): Time dependent copulas. Mimeo, CREST.Google Scholar
  54. Fisher, R.A. (1932): Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.zbMATHGoogle Scholar
  55. Frey, R. and McNeil, A.J. (2001): Modelling dependent defaults. ETH, Zürich, E-Collection,
  56. Gagliardini, P. and Gouriéroux, C. (2007a): An Efficient Nonparametric Estimator for Models with Non-linear Dependence. Journal of Econometrics 137, 187–229.CrossRefGoogle Scholar
  57. Gagliardini, P. and Gouriéroux, C. (2007b): Duration Time Series Models with Proportional Hazard. Journal of Time Series Analysis forthcoming.Google Scholar
  58. Galambos, J. (1978): The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.zbMATHGoogle Scholar
  59. Garcia, R. and Tsafack, G. (2007): Dependence Structure and Extreme Comovements in International Equity and Bond Markets. Working paper, Université de Montreal.Google Scholar
  60. Genest, C. and Rivest, L.-P. (1993): Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association 88, 1034–1043.zbMATHCrossRefMathSciNetGoogle Scholar
  61. Genest, C., Ghoudi, K. and Rivest, L.-P. (1995): A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions. Biometrika 82, 543–552.zbMATHCrossRefMathSciNetGoogle Scholar
  62. Genest, C., Quasada Molina, J.J., Rodríguez Lallena, J.A. and Sempi, C. (1999): A characterization of quasi-copulas. Journal of Multivariate Analysis 69, 193–205.zbMATHCrossRefMathSciNetGoogle Scholar
  63. Genest, C., Rémillard, B. and Beaudoin, D. (2007): Goodness-of-Fit Tests for Copulas: A Review and Power Study. Insurance: Mathematics and Economics forthcoming.Google Scholar
  64. Giesecke, K. (2004): Correlated Default with Incomplete Information. Journal of Banking and Finance 28, 1521–1545.CrossRefGoogle Scholar
  65. Grammig, J., Heinen, A. and Rengifo, E. (2004): An analysis of the submission of orders on Xetra, using multivariate count data. CORE Discussion Paper 2004/58. Google Scholar
  66. Granger, C.W.J., Teräsvirta, T. and Patton, A.J. (2006): Common factors in conditional distributions for bivariate time series. Journal of Econometrics 132, 43–57.CrossRefMathSciNetGoogle Scholar
  67. Hamilton, J.D. (1989): A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica 57, 357–384.zbMATHCrossRefMathSciNetGoogle Scholar
  68. Heinen, A. and Rengifo, E. (2003): Modelling Multivariate Time Series of Count Data Using Copulas. CORE Discussion Paper 2003/25. Google Scholar
  69. Hu, L. (2006): Dependence Patterns across Financial Markets: A Mixed Copula Approach. Applied Financial Economics 16, 717–729.CrossRefGoogle Scholar
  70. Hull, J. and White, A. (1998): Value–at–Risk when daily changes in market variables are not normally distributed. Journal of Derivatives 5, 9–19.Google Scholar
  71. Hurd, M., Salmon, M. and Schleicher, C. (2005): Using copulas to construct bivariate foreign exchange distributions with an application to the Sterling exchange rate index. Mimeo, Bank of England.Google Scholar
  72. Ibragimov, R. (2005): Copula-based dependence characterizations and modeling for time series. Harvard Institute of Economic Research Discussion Paper 2094.Google Scholar
  73. Ibragimov, R. (2006): Copula-based characterizations and higher-order Markov processes. Mimeo, Department of Economics, Harvard University.Google Scholar
  74. Joe, H. (1997): Multivariate Models and Dependence Concepts. Monographs in Statistics and Probability 73. Chapman and Hall, London.Google Scholar
  75. Joe, H. and Xu, J.J. (1996): The Estimation Method of Inference Functions for Margins for Multivariate Models. Working paper, Department of Statistics, University of British Columbia.Google Scholar
  76. Jondeau, E. and Rockinger, M. (2006): The copula-GARCH model of conditional dependencies: an international stock market application. Journal of International Money and Finance 25, 827–853.CrossRefGoogle Scholar
  77. Lee, L.-F. (1983): Generalized econometric models with selectivity Econometrica 51, 507–512.zbMATHCrossRefMathSciNetGoogle Scholar
  78. Lee, T.-H. and Long, X. (2005): Copula-based multivariate GARCH model with uncorrelated dependent standardized returns. Journal of Econometrics forthcoming.Google Scholar
  79. Li, D.X. (2000): On default correlation: a copula function approach. Journal of Fixed Income 9, 43–54.Google Scholar
  80. Longin, F. and Solnik, B. (2001): Extreme Correlation of International Equity Markets. Journal of Finance 56, 649–676.CrossRefGoogle Scholar
  81. Malevergne, Y. and Sornette, D. (2003): Testing the Gaussian Copula Hypothesis for Financial Assets Dependences. Quantitative Finance 3, 231–250.CrossRefMathSciNetGoogle Scholar
  82. McNeil, A.J., Frey, R. and Embrechts, P. (2005): Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, New Jersey.zbMATHGoogle Scholar
  83. Meitz M. and Saikkonen P. (2004): Ergodicity, mixing, and the existence of moments of a class of Markov models with applications to GARCH and ACD models. Econometric Theory forthcoming.Google Scholar
  84. Mikosch, T. (2006): Copulas: Tales and Facts, with discussion and rejoinder. Extremes 9, 3–62.CrossRefMathSciNetGoogle Scholar
  85. Miller, D.J. and Liu, W.-H. (2002): On the recovery of joint distributions from limited information. Journal of Econometrics 107, 259–274.zbMATHCrossRefMathSciNetGoogle Scholar
  86. Mills, F.C. (1927): The Behavior of Prices. National Bureau of Economic Research, New York.Google Scholar
  87. Nelsen, R.B. (2006): An Introduction to Copulas, second Edition. Springer, New York.zbMATHGoogle Scholar
  88. Newey, W.K. and McFadden, D. (1994): Large Sample Estimation and Hypothesis Testing. In: Engle, R.F. and McFadden, D. (Eds.): Handbook of Econometrics 4. North-Holland, Amsterdam.Google Scholar
  89. Okimoto, T. (2006): New evidence of asymmetric dependence structure in international equity markets: further asymmetry in bear markets: Journal of Financial and Quantitative Analysis forthcoming.Google Scholar
  90. Panchenko, V. (2005a): Goodness-of-fit Tests for Copulas. Physica A 355, 176–182.CrossRefMathSciNetGoogle Scholar
  91. Panchenko, V. (2005b): Estimating and evaluating the predictive abilities of semiparametric multivariate models with application to risk management. Mimeo, University of Amsterdam.Google Scholar
  92. Patton, A.J. (2002): Applications of Copula Theory in Financial Econometrics. Unpublished Ph.D. dissertation, University of California, San Diego.Google Scholar
  93. Patton, A.J. (2004): On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation. Journal of Financial Econometrics 2, 130–168.CrossRefGoogle Scholar
  94. Patton, A.J. (2006a): Modelling Asymmetric Exchange Rate Dependence. International Economic Review 47, 527–556.CrossRefMathSciNetGoogle Scholar
  95. Patton, A.J. (2006b): Estimation of Multivariate Models for Time Series of Possibly Different Lengths. Journal of Applied Econometrics 21, 147–173.CrossRefMathSciNetGoogle Scholar
  96. Rivers, D. and Vuong, Q. (2002): Model Selection Tests for Nonlinear Dynamic Models. The Econometrics Journal 5, 1–39.zbMATHCrossRefMathSciNetGoogle Scholar
  97. Rodriguez, J.C. (2007): Measuring financial contagion: a copula approach. Journal of Empirical Finance 14, 401–423.CrossRefGoogle Scholar
  98. Rosenberg, J.V. (2003): Nonparametric pricing of multivariate contingent claims. Journal of Derivatives 10, 9–26.CrossRefGoogle Scholar
  99. Rosenberg, J.V. and Schuermann, T. (2006): A general approach to integrated risk management with skewed, fat-tailed risks. Journal of Financial Economics 79, 569–614.CrossRefGoogle Scholar
  100. Salmon, M. and Schleicher, C. (2006): Pricing Multivariate Currency Options with Copulas. In: Rank, J. (Ed.): Copulas: From Theory to Application in Finance. Risk Books, London.Google Scholar
  101. Sancetta, A. and Satchell, S. (2004): The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econometric Theory 20, 535–562.zbMATHCrossRefMathSciNetGoogle Scholar
  102. Scaillet, O. (2007): Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters. Journal of Multivariate Analysis 98, 533–543.zbMATHCrossRefMathSciNetGoogle Scholar
  103. Schönbucher, P. and Schubert, D. (2001): Copula Dependent Default Risk in Intensity Models. Mimeo, Bonn University.Google Scholar
  104. Shih, J.H. and Louis, T.A. (1995): Inferences on the Association Parameter in Copula Models for Bivariate Survival Data. Biometrics 51, 1384–1399.zbMATHCrossRefMathSciNetGoogle Scholar
  105. Silvennoinen, A. and Teräsvirta, T. (2008): Multivariate GARCH Models. In: Andersen, T.G., Davis, R. A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 201–229. Springer, New York.Google Scholar
  106. Sklar, A. (1959): Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de l’Universite de Paris 8, 229–231.MathSciNetGoogle Scholar
  107. Smith, M.D. (2003): Modelling sample selection using Archimedean copulas. Econometrics Journal 6, 99–123.zbMATHCrossRefMathSciNetGoogle Scholar
  108. Taylor, S.J. and Wang, Y.-H. (2004): Option prices and risk-neutral densities for currency cross-rates. Mimeo, Department of Accounting and Finance, Lancaster University.Google Scholar
  109. van den Goorbergh, R.W.J., C. Genest and Werker, B.J.M. (2005): Multivariate Option Pricing Using Dynamic Copula Models. Insurance: Mathematics and Economics 37, 101–114.zbMATHCrossRefMathSciNetGoogle Scholar
  110. van der Weide, R. (2002): GO-GARCH: A Multivariate Generalized Orthogonal GARCH Model. Journal of Applied Econometrics 17, 549–564.CrossRefGoogle Scholar
  111. Vuong, Q. (1989): Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 57, 307–333.zbMATHCrossRefMathSciNetGoogle Scholar
  112. White, H. (1994): Estimation, Inference and Specification Analysis. Econometric Society Monographs 22, Cambridge University Press, Cambridge, U.K.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Economics and Oxford-Man Institute of Quantitative FinanceUniversity of OxfordOxford OX1 3UQUnited Kingdom

Personalised recommendations