ARCH(∞) Models and Long Memory Properties

  • Liudas GiraitisEmail author
  • Remigijus Leipus
  • Donatas Surgailis


ARCH(∞)-models are a natural nonparametric generalization of the class of GARCH(p, q) models which exhibit a rich covariance structure (in particular, hyperbolic decay of the autocovariance function is possible). We discuss stationarity, long memory properties and the limit behavior of partial sums of ARCH(∞) processes as well as some of their modifications (linear ARCH and bilinear models).


Stochastic Volatility GARCH Model Stochastic Volatility Model Fourth Moment Memory Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2001): The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc. 96, 45–55.CrossRefMathSciNetGoogle Scholar
  2. Baillie, R.T., Bollerslev, T. and Mikkelsen, H.O. (1996): Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econometrics 74, 3–30.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Baillie, R.T., Chung, C.-F. and Tieslau, M.A. (1996): Analysing inflation by the fractionally integrated ARFIMA-GARCH model. J. Appl. Econometrics 11, 23–40.CrossRefGoogle Scholar
  4. Basrak, B., Davis, R.A. and Mikosch, T. (2002): Regular variation of GARCH processes. Stoch. Process. Appl. 99, 95–116.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Beran, J. (1994): Statistics for Long-Memory Processes. Chapman and Hall, New York.zbMATHGoogle Scholar
  6. Beran, J. (2006): Location estimation for LARCH processes. J. Mult. Anal. 97, 1766–1782.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Berkes, I., Horvàth, L. and Kokoszka, P.S. (2004): Probabilistic and statistical properties of GARCH processes. Fields Inst. Commun. 44, 409–429.Google Scholar
  8. Berkes, I. and Horvàth, L. (2003): Asymptotic results for long memory LARCH sequences. Ann. Appl. Probab. 13, 641–668.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Bollerslev, T. (1986): Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307–327.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Bougerol, P. and Picard, N. (1992): Stationarity of GARCH processes and of some non-negative time series. J. Econometrics 52, 115–127.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Breidt, F.J., Crato, N. and de Lima, P. (1998): On the detection and estimation of long memory in stochastic volatility. J. Econometrics 83, 325–348.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Brockwell, P.J. and Davis, R.A. (1991): Time Series: Theory and Methods. Springer, New York.Google Scholar
  13. Cox, D.R (1984): Long-range dependence: a review. In: David, H.A. and David, H.T. (Eds.): Statistics: An Appraisal. Proc. 50th Anniversary Conference, 55-74. Iowa State University Press.Google Scholar
  14. Dacorogna, M.M., Müller, U.A., Nagler, R.J., Olsen, R.B. and Pictet, O.V. (1993): A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. J. Intern. Money and Finance 12, 413–438.CrossRefGoogle Scholar
  15. Davidson, J. (2004): Moment and memory properties of linear conditional heteroscedasticity models, and a new model. J. Business and Economic Statist. 22, 16–29.CrossRefGoogle Scholar
  16. Davis, R.A. and Mikosch, T. (2008): Extreme value theory for GARCH processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 186–200. Springer, New York.Google Scholar
  17. Ding, Z., Granger, C.W.J. and Engle, R.F. (1993): A long memory property of stock market returns and a new model. J. Emp. Finance 1, 83–106.CrossRefGoogle Scholar
  18. Ding, Z. and Granger, C.W.J. (1996): Modeling volatility persistence of speculative returns: a new approach. J. Econometrics 73, 185–215.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Douc, R., Roueff, F. and Soulier, P. (2008): On the existence of some ARCH(∞)-processes. Stochastic Processes and Their Applications 118, 755–761.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Doukhan, P., Teyssière, G. and Winant, P. (2006): An LARCH(∞) vector valued process. In: Bertail, P., Doukhan, P. and Soulier, P. (Eds.): Dependence in Probability and Statistics. Lecture Notes in Statistics 187, 307–320. Springer, New York.CrossRefGoogle Scholar
  21. Engle, R.F. (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1008.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Engle, R.F. and Bollerslev, T. (1986): Modelling the persistence of conditional variances. Econometric Reviews 27, 1–50.CrossRefMathSciNetGoogle Scholar
  23. Giraitis, L., Kokoszka, P. and Leipus, R. (2000): Stationary ARCH models: dependence structure and Central Limit Theorem. Econometric Th. 16, 3–22.zbMATHMathSciNetGoogle Scholar
  24. Giraitis, L., Robinson, P.M. and Surgailis, D. (2000): A model for long memory conditional heteroskedasticity. Ann. Appl. Probab. 10, 1002–1024.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Giraitis, L., Leipus, R., Robinson, P.M. and Surgailis, D. (2004): LARCH, leverage and long memory. J. Financial Econometrics 2, 177–210.CrossRefGoogle Scholar
  26. Giraitis, L. and Surgailis, D. (2002): ARCH-type bilinear models with double long memory. Stoch. Process. Appl. 100, 275–300.zbMATHCrossRefMathSciNetGoogle Scholar
  27. Giraitis, L., Leipus, R. and Surgailis, D. (2006): Recent advances in ARCH modelling. In: Teyssière, G. and Kirman, A. (Eds.): Long Memory in Economics, 3–38. Springer, New York.Google Scholar
  28. Granger, C.W.J. and Hyung, N. (2004): Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J. Empirical Finance 11, 399–421.CrossRefGoogle Scholar
  29. Harvey, A. (1998): Long memory in stochastic volatility. In: Knight, J. and Satchell, S. (Eds.): Forecasting Volatility in the Financial Markets 307-320. Butterworth & Heineman.Google Scholar
  30. He, C. and Teräsvirta, T. (1999): Fourth moment structure of the GARCH(p,q) process. Econometric Th. 15, 824–846.zbMATHGoogle Scholar
  31. Karanasos, M. (1999): The second moment and the autocovariance function of the squared errors of the GARCH model. J. Econometrics 90, 63–76.zbMATHCrossRefMathSciNetGoogle Scholar
  32. Kazakevičius, V. and Leipus, R. (2002): On stationarity in the ARCH(∞) model. Econometric Th. 18, 1–16.zbMATHCrossRefGoogle Scholar
  33. Kazakevičius, V. and Leipus, R. (2003): A new theorem on existence of invariant distributions with applications to ARCH processes. J. Appl. Probab. 40, 147–162.zbMATHCrossRefMathSciNetGoogle Scholar
  34. Kazakevičius, V., Leipus, R. and Viano, M.-C. (2004): Stability of random coefficient autoregressive conditionally heteroskedastic models and aggregation schemes. J. Econometrics 120, 139–158.CrossRefMathSciNetGoogle Scholar
  35. Klivečka, A. and Surgailis, D. (2007): GARCH(1,1) process can have arbitrarily heavy power tails. Lithuan. Math. J. 47, 196–210.Google Scholar
  36. Kokoszka, P. and Leipus, R. (2000): Change-point estimation in ARCH models. Bernoulli 6, 513–539.zbMATHCrossRefMathSciNetGoogle Scholar
  37. Leipus, R., Paulauskas, V. and Surgailis, D. (2005): Renewal regime switching and stable limit laws. J. Econometrics 129, 299–327.CrossRefMathSciNetGoogle Scholar
  38. Li, W.K., Ling, S. and McAleer, M. (2002): Recent theoretical results for time series models with GARCH errors. J. Economic Surv. 16, 245–269.CrossRefGoogle Scholar
  39. Lindner, A.M. (2008): Stationarity, mixing, distributional properties and moments of GARCH(p,q)-processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 43–69. Springer, New York.Google Scholar
  40. Ling, S. and Li, W.K. (1998): On fractionally integrated autoregressive moving average time series models with conditional heteroskedasticity. J. Amer. Statist. Assoc. 92, 1184–1193.CrossRefMathSciNetGoogle Scholar
  41. Liu, M. (2000): Modeling long memory in stock market volatility. J. Econometrics 99, 139–171.zbMATHCrossRefGoogle Scholar
  42. Mikosch, T. and Stărică, C. (2000): Is it really long memory we see in financial returns? In: Embrechts, P. (Ed.): Extremes and Integrated Risk Management, 149–168. Risk Books, London.Google Scholar
  43. Mikosch, T. and Stărică, C. (2003): Long-range dependence effects and ARCH modeling. In: Doukhan, P., Oppenheim, G. and Taqqu, M. S. (Eds.): Theory and Applications of Long-Range Dependence, 539–459. Birkhäuser, Boston.Google Scholar
  44. Mikosch, T. and Stărică, C. (2000): Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. Ann. Statist. 28, 1427–1451.zbMATHCrossRefMathSciNetGoogle Scholar
  45. Nelson, D.B. (1990) Stationarity and persistence in the GARCH(1, 1) model. Econometric Theory 6, 318–334.CrossRefMathSciNetGoogle Scholar
  46. Newman, C.M. and Wright, A.L. (1981): An invariance principle for certain dependent sequences. Ann. Probab. 9, 671–675.zbMATHCrossRefMathSciNetGoogle Scholar
  47. Robinson, P.M. (1991): Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J. Econometrics 47, 67–84.zbMATHCrossRefMathSciNetGoogle Scholar
  48. Robinson, P.M. (2001): The memory of stochastic volatility models. J. Econometrics 101, 195–218.zbMATHCrossRefMathSciNetGoogle Scholar
  49. Robinson, P.M. and Zaffaroni, P. (1997): Modelling nonlinearity and long memory in time series. Fields Inst. Commun. 11, 161–170.MathSciNetGoogle Scholar
  50. Robinson, P.M. and Zaffaroni, P. (1998): Nonlinear time series with long memory: a model for stochastic volatility. J. Statist. Plan. Infer. 68, 359–371.zbMATHCrossRefMathSciNetGoogle Scholar
  51. Robinson, P.M. and Zaffaroni, P. (2006): Pseudo-maximum likelihood estimation of ARCH(1) models. Ann. Statist. 34, 1049–1074.zbMATHCrossRefMathSciNetGoogle Scholar
  52. Surgailis, D. and Viano, M.-C. (2002): Long memory properties and covariance structure of the EGARCH model. ESAIM: Probability and Statistics 6, 311–329.CrossRefMathSciNetGoogle Scholar
  53. Teräsvirta, T. (2008): An introduction to univariate GARCH models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 17–42. Springer, New York.Google Scholar
  54. Teräsvirta, T. (1996): Two stylized facts and the GARCH(1,1) model. Stockholm School of Economics. SSE/EFI Working Paper Series in Economics and Finance 96.Google Scholar
  55. Teyssière, G. (1997): Double long-memory financial time series. Preprint,
  56. Zaffaroni, P. (2000): Stationarity and memory of ARCH(∞) models. Econometric Theory 20, 147–160.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Liudas Giraitis
    • 1
    Email author
  • Remigijus Leipus
    • 2
  • Donatas Surgailis
    • 2
  1. 1.Department of EconomicsQueen Mary, University of LondonLondonU.K.
  2. 2.Lithuania, and Institute of Mathematics and InformaticsVilnius UniversityNaugardukoLithuania

Personalised recommendations