Cointegration: Overview and Development

  • Søren JohansenEmail author


This article presents a survey of the analysis of cointegration using the vector autoregressive model. After a few illustrative economic examples, the three model based approaches to the analysis of cointegration are discussed.The vector autoregressive model is defined and the moving average representation of the solution, the Granger representation, is given. Next the interpretation of the model and its parameters and likelihood based inference follows using reduced rank regression. The asymptotic analysis includes the distribution of the Gaussian maximum likelihood estimators, the rank test, and test for hypotheses on the cointegrating vectors. Finally, some applications and extensions of the basic model are mentioned and the survey concludes with some open problems.


Unit Root Asymptotic Distribution Rational Expectation Vector Autoregressive Model Rank Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, S.K. and Reinsel, G.C. (1990): Estimation for partially nonstationary multivariate autoregressive models. Journal of the American Statistical Association 85, 813-823.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Anderson, T.W. (1951): Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22, 327-351.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Anderson, T.W. (1971): The statistical analysis of time series. Wiley, New York.zbMATHGoogle Scholar
  4. Banerjee, A., Dolado J.J., Galbraith J.W. and Hendry D.F.(1993): Co-integration error-correction and the econometric analysis of nonstationary data. Oxford University Press, Oxford.CrossRefGoogle Scholar
  5. Bartlett, M. (1948): A note on the statistical estimation of the demand and supply relations from time series. Econometrica 16, 323-329.zbMATHCrossRefGoogle Scholar
  6. Basawa, I.V. and Scott, D.J. (1983): Asymptotic optimal inference for non-ergodic models. Springer, New York.zbMATHGoogle Scholar
  7. Boswijk, P. (2000): Mixed normality and ancillarity in I(2) systems. Econometric Theory 16, 878-904.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Campbell, J. and Shiller, R.J. (1987): Cointegration and tests of present value models. Journal of Political Economy 95, 1062-1088.CrossRefGoogle Scholar
  9. Dickey, D.A. and Fuller, W.A. (1981): Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057-1072.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Engle, R.F. and Granger, C.W.J. (1987): Co-integration and error correction: Representation, estimation and testing. Econometrica 55, 251-276.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Engle, R.F., Hendry, D.F. and Richard. J.-F. (1983): Exogeneity. Econometrica 51, 277-304.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Engle, R.F. and Yoo, B.S. (1991): Cointegrated economic time series: A survey with new results. In: Granger, C.W.J. and Engle, R.F. (Eds.): Long-run economic relations. Readings in cointegration. Oxford University Press, Oxford.Google Scholar
  13. Granger, C.W.J. (1983): Cointegrated variables and error correction models. UCSD Discussion paper 83-13a.Granger, C.W.J. (1983): Cointegrated variables and error correction models. UCSD Discussion paper 83-13a.Google Scholar
  14. Hamilton, J.D. (1994): Time series analysis. Princeton University Press, Princeton New Jersey.zbMATHGoogle Scholar
  15. Hansen. L.P. and Sargent, T.J. (1991): Exact linear rational expectations models: Specification and estimation. In: Hansen, L.P. and Sargent, T.J. (Eds.): Rational expectations econometrics. Westview Press, Boulder.Google Scholar
  16. Hansen, H. and Johansen, S.(1999): Some tests for parameter constancy in the cointegrated VAR. The Econometrics Journal 2, 306-333.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Hendry, D.F. (1995): Dynamic econometrics. Oxford University Press, Oxford.zbMATHCrossRefGoogle Scholar
  18. Johansen, S. (1988): Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12, 231-254.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Johansen, S. (1995): The role of ancillarity in inference for nonstationary variables. Economic Journal 13, 302-320.CrossRefGoogle Scholar
  20. Johansen, S. (1991): Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59, 1551-1580.zbMATHCrossRefMathSciNetGoogle Scholar
  21. Johansen, S. (1996): Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press, Oxford.Google Scholar
  22. Johansen, S. (1997): Likelihood analysis of the I(2) model. Scandinavian Journal of Statistics 24, 433-462.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Johansen, S. (2000): A Bartlett correction factor for tests on the cointegration relations. Econometric Theory 16, 740-778.zbMATHCrossRefMathSciNetGoogle Scholar
  24. Johansen, S. (2002): A small sample correction of the test for cointegration rank in the vector autoregressive model. Econometrica 70, 1929-1961.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Johansen, S. (2005): The interpretation of cointegration coefficients in the cointegrated vector autoregressive model. Oxford Bulletin of Economics and Statistics 67, 93-104.CrossRefGoogle Scholar
  26. Johansen, S. (2006a): Cointegration: a survey. In: Mills, T.C. and Patterson, K. (Eds.): Palgrave handbook of econometrics: Volume 1, Econometric theory. Palgrave Macmillan, Basingstoke.Google Scholar
  27. Johansen, S. (2006b): Representation of cointegrated autoregressive processes with application to fractional processes. Forthcoming in Econometric Reviews.Johansen, S. (2006b): Representation of cointegrated autoregressive processes with application to fractional processes. Forthcoming in Econometric Reviews.Google Scholar
  28. Johansen, S. (2006c): Statistical analysis of hypotheses on the cointegration relations in the I(2) model. Journal of Econometrics 132, 81-115.CrossRefMathSciNetGoogle Scholar
  29. Johansen, S., Mosconi, R. and Nielsen, B. (2000): Cointegration analysis in the presence of structural breaks in the deterministic trend. The Econometrics Journal 3, 1-34.CrossRefMathSciNetGoogle Scholar
  30. Johansen, S. and Swensen, A.R. (2004): More on testing exact rational expectations in vector autoregressive models: Restricted drift term. The Econometrics Journal 7, 389-397.zbMATHCrossRefMathSciNetGoogle Scholar
  31. Juselius, K. and MacDonald, R. (2004): The international parities between USA and Japan. Japan and the World Economy 16, 17-34.CrossRefGoogle Scholar
  32. Juselius, K. (2006): The cointegrated VAR model: Econometric methodology and macroeconomic applications. Oxford University Press, Oxford.zbMATHGoogle Scholar
  33. Lange, T. and Rahbek, A. (2008): An introduction to regime switching time series models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 871–887. Springer, New York.Google Scholar
  34. Lütkepohl, H. (2006): Introduction to multiple times series analysis. Springer, New York.Google Scholar
  35. Muth, J.F. (1961): Rational expectations and the theory of price movements. Econometrica 29, 315-335.CrossRefGoogle Scholar
  36. Nielsen, H.B. and Rahbek, A. (2004): Likelihood ratio testing for cointegration ranks in I(2) Models. Forthcoming Econometric Theory.Nielsen, H.B. and Rahbek, A. (2004): Likelihood ratio testing for cointegration ranks in I(2) Models. Forthcoming Econometric Theory.Google Scholar
  37. Nyblom, J. and Harvey, A. (2000): Tests of common stochastic trends. Econometric Theory 16, 176-199.zbMATHCrossRefMathSciNetGoogle Scholar
  38. Paruolo, P. (1996): On the determination of integration indices in I(2) systems. Journal of Econometrics 72, 313-356.zbMATHCrossRefMathSciNetGoogle Scholar
  39. Paruolo, P. and Rahbek, A. (1999): Weak exogeneity in I(2) VAR systems. Journal of Econometrics 93, 281-308.zbMATHCrossRefMathSciNetGoogle Scholar
  40. Paruolo, P. (2000): Asymptotic efficiency of the two stage estimator in I(2) systems. Econometric Theory 16, 524-550.zbMATHCrossRefMathSciNetGoogle Scholar
  41. Phillips, P.C.B. (1991): Optimal inference in cointegrated systems. Econometrica 59, 283-306.zbMATHCrossRefMathSciNetGoogle Scholar
  42. Phillips, P.C.B. and Hansen, B.E. (1990): Statistical inference on instrumental variables regression with I(1) processes. Review of Economic Studies 57, 99-124.zbMATHCrossRefMathSciNetGoogle Scholar
  43. Proietti, T. (1997): Short-run dynamics in cointegrated systems. Oxford Bulletin of Economics and Statistics 59, 405-422.CrossRefGoogle Scholar
  44. Rahbek, A., Kongsted, H.C. and Jørgensen, C. (1999): Trend-stationarity in the I(2) cointegration model. Journal of Econometrics 90, 265-289.zbMATHCrossRefMathSciNetGoogle Scholar
  45. Seo, B. (1998): Tests for structural change in cointegrated systems. Econometric Theory 14, 222-259.CrossRefMathSciNetGoogle Scholar
  46. Stock, J.H. (1987): Asymptotic properties of least squares estimates of cointegration vectors. Econometrica 55, 1035-1056.zbMATHCrossRefMathSciNetGoogle Scholar
  47. Swensen, A.R. (2006): Bootstrap algorithms for testing and determining the cointegrating rank in VAR models. Forthcoming Econometric Theory.Swensen, A.R. (2006): Bootstrap algorithms for testing and determining the cointegrating rank in VAR models. Forthcoming Econometric Theory.Google Scholar
  48. Watson, M. (1994): Vector autoregressions and cointegration. In: Engle, R.F. and McFadden, D. (Eds.): Handbook of econometrics Vol. 4. North Holland Publishing Company, The Netherlands.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsUniversity of Copenhagen

Personalised recommendations