Skip to main content

Parametric Inference for Discretely Sampled Stochastic Differential Equations

  • Chapter
  • First Online:

Abstract

A review is given of parametric estimation methods for discretely sampled multivariate diffusion processes. The main focus is on estimating functions and asymptotic results. Maximum likelihood estimation is briefly considered, but the emphasis is on computationally less demanding martingale estimating functions. Particular attention is given to explicit estimating functions. Results on both fixed frequency and high frequency asymptotics are given. When choosing among the many estimators available, guidance is provided by simple criteria for high frequency efficiency and rate optimality that are presented in the framework of approximate martingale estimating functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aït-Sahalia, Y. (2002): Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70, 223–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Aït-Sahalia, Y. (2003): Closed-form likelihood expansions for multivariate diffusions. Working paper, Princeton University. Ann. Statist. to appear.

    Google Scholar 

  • Aït-Sahalia, Y. and Mykland, P. (2003): The effects of random and discrete sampling when estimating continuous-time diffusions. Econometrica 71, 483–549.

    Article  MATH  MathSciNet  Google Scholar 

  • Aït-Sahalia, Y. and Mykland, P. A. (2004): Estimators of diffusions with randomly spaced discrete observations: a general theory. Ann. Statist. 32, 2186–2222.

    Article  MATH  MathSciNet  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006): Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. Roy. Statist. Soc. B 68, 333–382.

    Article  MATH  MathSciNet  Google Scholar 

  • Bibby, B. M. and Sørensen, M. (1995): Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1, 17–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Bibby, B. M. and Sørensen, M. (1996): On estimation for discretely observed diffusions: a review. Theory of Stochastic Processes 2, 49–56.

    Google Scholar 

  • Billingsley, P. (1961): The lindeberg-lévy theorem for martingales. Proc. Amer. Math. Soc. 12, 788–792.

    Article  MATH  MathSciNet  Google Scholar 

  • Bollerslev, T. and Wooldridge, J. (1992): Quasi-maximum likelihood estimators and inference in dynamic models with time-varying covariances. Econometric Review 11, 143–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell, J. Y., Lo, A. W., and MacKinlay, A. C.(1997): The Econometrics of Financial Markets. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992): An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209–1227.

    Article  Google Scholar 

  • Dacunha-Castelle, D. and Florens-Zmirou, D. (1986): Estimation of the coefficients of a diffusion from discrete observations. Stochastics 19, 263–284.

    MATH  MathSciNet  Google Scholar 

  • De Jong, F., Drost, F. C., and Werker, B. J. M. (2001): A jump-diffusion model for exchange rates in a target zone. Statistica Neerlandica 55, 270–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Dorogovcev, A. J. (1976): The consistency of an estimate of a parameter of a stochastic differential equation. Theor. Probability and Math. Statist. 10, 73–82.

    Google Scholar 

  • Doukhan, P. (1994):Mixing, Properties and Examples. Lecture Notes in Statistics 85. Springer, New York.

    Google Scholar 

  • Durbin, J. (1960): Estimation of parameters in time-series regression models. J. Roy. Statist. Soc. B 22, 139–153.

    MATH  MathSciNet  Google Scholar 

  • Durham, G. B. and Gallant, A. R. (2002): Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Business & Econom. Statist. 20, 297–338.

    Article  MathSciNet  Google Scholar 

  • Elerian, O., Chib, S., and Shephard, N. (2001): Likelihood inference for discretely observed non-linear diffusions. Econometrica 69, 959–993.

    Article  MATH  MathSciNet  Google Scholar 

  • Eraker, B. (2001): Mcmc analysis of diffusion models with application to finance. J. Business & Econom. Statist. 19, 177–191.

    Article  MathSciNet  Google Scholar 

  • Florens-Zmirou, D. (1989): Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20, 547–557.

    Article  MATH  MathSciNet  Google Scholar 

  • Forman, J. L. and Sørensen, M. (2008): The pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Statist. to appear.

    Google Scholar 

  • Genon-Catalot, V. (1990): Maximum contrast estimation for diffusion processes from discrete observations. Statistics 21, 99–116.

    Article  MATH  MathSciNet  Google Scholar 

  • Genon-Catalot, V. and Jacod, J. (1993): On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré, Probabilités et Statistiques 29, 119–151.

    MATH  MathSciNet  Google Scholar 

  • Genon-Catalot, V., Jeantheau, T., and Larédo, C. (2000): Stochastic volatility models as hidden markov models and statistical applications. Bernoulli 6, 1051–1079.

    Article  MATH  MathSciNet  Google Scholar 

  • Gloter, A. and Sørensen, M. (2008): Estimation for stochastic differential equations with a small diffusion coefficient. Stoch. Proc. Appl. to appear.

    Google Scholar 

  • Gobet, E. (2002): Lan property for ergodic diffusions with discrete observations. Ann. Inst. Henri Poincaré, Probabilités et Statistiques 38, 711–737.

    Article  MATH  MathSciNet  Google Scholar 

  • Godambe, V. P. (1960): An optimum property of regular maximum likelihood estimation. Ann. Math. Stat. 31, 1208–1212.

    Article  MathSciNet  Google Scholar 

  • Godambe, V. P. and Heyde, C. C. (1987): Quasi likelihood and optimal estimation. International Statistical Review 55, 231–244.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P. and Heyde, C. C. (1980): Martingale Limit Theory and Its Applications. Academic Press, New York.

    Google Scholar 

  • Hansen, L. P. (1982): Large sample properties of generalized method of moments estimators. Econometrica 50, 1029–1054.

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen, L. P. and Scheinkman, J. A. (1995): Back to the future: generating moment implications for continuous-time markov processes. Econometrica 63, 767–804.

    Article  MATH  MathSciNet  Google Scholar 

  • Heyde, C. C. (1997): Quasi-Likelihood and Its Application. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Jacobsen, M. (2001): Discretely observed diffusions; classes of estimating functions and small δ-optimality. Scand. J. Statist. 28, 123–150.

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobsen, M. (2002): Optimality and small δ-optimality of martingale estimating functions. Bernoulli 8, 643–668.

    MATH  MathSciNet  Google Scholar 

  • Jacod, J. and Sørensen, M. (2008): Asymptotic statistical theory for stochastic processes: a review. Preprint, Department of Mathematical Sciences, University of Copenhagen.

    Google Scholar 

  • Kelly, L., Platen, E., and Sørensen, M. (2004): Estimation for discretely observed diffusions using transform functions. J. Appl. Prob. 41, 99–118.

    Article  Google Scholar 

  • Kessler, M. (1996): Estimation paramétrique des coefficients d'une diffusion ergodique à partir d'observations discrètes. PhD thesis, Laboratoire de Probabilités, Université Paris VI.

    Google Scholar 

  • Kessler, M. (1997): Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24, 211–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Kessler, M. (2000): Simple and explicit estimating functions for a discretely observed diffusion process. Scand. J. Statist. 27, 65–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Kessler, M. and Paredes, S. (2002): Computational aspects related to martingale estimating functions for a discretely observed diffusion. Scand. J. Statist. 29, 425–440.

    Article  MATH  MathSciNet  Google Scholar 

  • Kessler, M. and Sørensen, M. (1999): Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5, 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Kusuoka, S. and Yoshida, N. (2000): Malliavin calculus, geometric mixing, and expansion of diffusion functionals. Probability Theory and Related Fields 116, 457–484.

    Article  MATH  MathSciNet  Google Scholar 

  • Larsen, K. S. and Sørensen, M. (2007): A diffusion model for exchange rates in a target zone. Mathematical Finance 17, 285–306.

    Article  MATH  MathSciNet  Google Scholar 

  • Nagahara, Y. (1996): Non-gaussian distribution for stock returns and related stochastic differential equation. Financial Engineering and the Japanese Markets 3, 121–149.

    Article  Google Scholar 

  • Overbeck, L. and Rydén, T. (1997): Estimation in the cox-ingersoll-ross model. Econometric Theory 13, 430–461.

    Article  MathSciNet  Google Scholar 

  • Ozaki, T. (1985): Non-linear time series models and dynamical systems. In: Hannan, E. J., Krishnaiah, P. R., and Rao, M. M. (Eds.): Handbook of Statistics 5, 25–83. Elsevier Science Publishers.

    Google Scholar 

  • Pedersen, A. R. (1995): A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 22, 55–71.

    MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B. and Yu, J. (2008): Maximum likelihood and Gaussian estimation of continuous time models in finance. In: Andersen, T. G., Davis, R. A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series. 497–530. Springer, New York.

    Google Scholar 

  • Poulsen, R. (1999): Approximate maximum likelihood estimation of discretely observed diffusion processes. Working Paper 29, Centre for Analytical Finance, Aarhus.

    Google Scholar 

  • Prakasa Rao, B. L. S. (1988): Statistical inference from sampled data for stochastic processes. Contemporary Mathematics 80, 249–284.

    MathSciNet  Google Scholar 

  • Roberts, G. O. and Stramer, O. (2001): On inference for partially observed nonlinear diffusion models using metropolis-hastings algorithms. Biometrika 88, 603–621.

    Article  MATH  MathSciNet  Google Scholar 

  • Skorokhod, A. V. (1989): Asymptotic Methods in the Theory of Stochastic Differential Equations. American Mathematical Society, Providence, Rhode Island.

    MATH  Google Scholar 

  • Sørensen, H. (2001): Discretely observed diffusions: Approximation of the continuous-time score function. Scand. J. Statist. 28, 113–121.

    Article  MathSciNet  Google Scholar 

  • Sørensen, M. (1997): Estimating functions for discretely observed diffusions: a review. In: Basawa, I. V., Godambe, V. P. and Taylor, R. L. (Eds.): Selected Proceedings of the Symposium on Estimating Functions, 305–325. IMS Lecture Notes–Monograph Series 32. Institute of Mathematical Statistics, Hayward.

    Chapter  Google Scholar 

  • Sørensen, M. (2007): Efficient estimation for ergodic diffusions sampled at high frequency. Preprint, Department of Mathematical Sciences, University of Copenhagen.

    Google Scholar 

  • Sørensen, M. and Uchida, M. (2003): Small-diffusion asymptotics for discretely sampled stochastic differential equations. Bernoulli 9, 1051–1069.

    Article  MathSciNet  Google Scholar 

  • Veretennikov, A. Y. (1987): Bounds for the mixing rate in the theory of stochastic equations. Theory of Probability and its Applications 32, 273–281.

    Article  MATH  Google Scholar 

  • Wong, E. (1964): The construction of a class of stationary markoff processes. In: Bellman, R. (Ed.): Stochastic Processes in Mathematical Physics and Engineering, 264–276. American Mathematical Society, Rhode Island.

    Google Scholar 

  • Yoshida, N. (1992): Estimation for diffusion processes from discrete observations. Journal of Multivariate Analysis 41, 220–242.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sørensen, M. (2009). Parametric Inference for Discretely Sampled Stochastic Differential Equations. In: Mikosch, T., Kreiß, JP., Davis, R., Andersen, T. (eds) Handbook of Financial Time Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71297-8_23

Download citation

Publish with us

Policies and ethics