Jump–Type Lévy Processes

  • Ernst EberleinEmail author


Lévy processes are developed in the more general framework of semimartingale theory with a focus on purely discontinuous processes. The fundamental exponential Lévy model is given, which allows us to describe stock prices or indices in a more realistic way than classical diffusion models. A number of standard examples including generalized hyperbolic and CGMY Lévy processes are considered in detail.


Option Price Variance Gamma Local Martingale Divisible Distribution Term Structure Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachelier, L. (1900): Théorie de la spéculation. PhD thesis, Annales Scientifiques de l’École Normale Superieure II I–17, 21–86. English Translation in: Cootner, P. (Ed.) (1964): Random Character of Stock Market Prices, 17–78. Massachusetts Institute of Technology, Cambridge.Google Scholar
  2. Barndorff-Nielsen, O. E. (1978): Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics 5, 151–157.zbMATHMathSciNetGoogle Scholar
  3. Barndorff-Nielsen, O. E. (1998): Processes of normal inverse Gaussian type. Finance and Stochastics, 2, 41–68.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Barndorff-Nielsen, O. E, Mikosch, T. and Resnick, S. I. (Eds.) (2001): Lévy Processes. Theory and Applications. Birkhäuser, Basel.zbMATHGoogle Scholar
  5. Bertoin, J. (1996): Lévy processes. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  6. Björk, T. (2008): An overview of interest rate theory. In: Andersen, T.G , Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 614–651. Springer, New York.Google Scholar
  7. Black, F. and Scholes, M. (1973): The pricing of options and corporate liabilities. Journal of Political Economy, 81 637–654.CrossRefGoogle Scholar
  8. Breiman, L. (1968): Probability. Addison-Wesley, Reading.zbMATHGoogle Scholar
  9. Carr, P., Geman, H., Madan, D. and Yor, M. (2002): The fine structure of asset returns: An empirical investigation. Journal of Business 75, 305–332.CrossRefGoogle Scholar
  10. Cont, R. and Tankov, P. (2004): Financial Modelling with Jump Processes. Chapman & Hall/CRC, New York.zbMATHGoogle Scholar
  11. Eberlein, E. (2001): Application of generalized hyperbolic Lévy motions to finance. In:Barndorff-Nielsen, O. E (Eds.): Lévy Processes. Theory and Applications, 319–336. Birkhäuser, Basel.Google Scholar
  12. Eberlein, E. and Keller, U. (1995): Hyperbolic distributions in finance. Bernoulli, 1, 281–299.zbMATHCrossRefGoogle Scholar
  13. Eberlein, E. and Kluge, W. (2006): Exact pricing formulae for caps and swaptions in a Lévy term structure model. Journal of Computational Finance 9, 99–125.MathSciNetGoogle Scholar
  14. Eberlein, E. and Kluge, W. (2007): Calibration of Lévy term structure models. In:Fu, M., Jarrow, R. A., Yen, J.-Y. and Elliot, R. J.(Eds.): Advances in Mathematical Finance: In Honor of Dilip B. Madan, 155–180. Birkhäuser, Basel.Google Scholar
  15. Eberlein, E. and Koval, N. (2006): A cross-currency Lévy market model. Quantitative Finance 6, 465–480.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Eberlein, E. and Özkan, F. (2003a): The defaultable Lévy term structure: Ratings and restructuring. Mathematical Finance 13, 277–300.zbMATHCrossRefGoogle Scholar
  17. Eberlein, E. and Özkan, F. (2003b): Time consistency of Lévy models. Quantitative Finance 3, 40–50.CrossRefGoogle Scholar
  18. Eberlein, E. and Özkan, F. (2005): The Lévy LIBOR model. Finance and Stochastics 9, 327–348.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Eberlein, E. and Prause, K. (2002): The generalized hyperbolic model: Financial derivatives and risk measures. In: Mathematical Finance—Bachelier Congress, 2000 (Paris), 245–267. Springer, New York.Google Scholar
  20. Eberlein, E. and Raible, S. (1999): Term structure models driven by general Lévy processes. Mathematical Finance 9, 31–53.zbMATHCrossRefMathSciNetGoogle Scholar
  21. Eberlein, E. and von Hammerstein, E. A. (2004): Generalized hyperbolic and inverse gaussian distributions: Limiting cases and approximation of processes. In: Dalang, R. C., Dozzi, M., and Russo, F. (Eds.): Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress in Probability 58, 221–264. Birkhäuser, Basel.Google Scholar
  22. Eberlein, E., Jacod, J. and Raible, S. (2005): Lévy term structure models: No-arbitrage and completeness. Finance and Stochastics 9, 67–88.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Fama, E. (1965): The behaviour of stock market prices. Journal of Business 38, 34–105.CrossRefGoogle Scholar
  24. Jacod, J. and Shiryaev, A. N. (1987): Limit Theorems for Stochastic Processes. Springer, New York.zbMATHGoogle Scholar
  25. Kou, S. G. (2002): A jump diffusion model for option pricing. Management Science 48, 1086–1101.CrossRefGoogle Scholar
  26. Madan, D. and Milne, F. (1991): Option pricing with V.G. martingale component. Mathematical Finance 1, 39–55.zbMATHCrossRefGoogle Scholar
  27. Madan, D. and Seneta, E. (1990): The variance gamma (V.G.) model for share market returns. Journal of Business 63, 511–524.CrossRefGoogle Scholar
  28. Morton, R. C. (1976): Option pricing when underlying stock returns are discontinuous. Journal Financ. Econ. 3, 125–144.CrossRefGoogle Scholar
  29. Protter, P. E. (2004): Stochastic Integration and Differential Equations. (2nd ed.). Volume 21 of Applications of Mathematics. Springer, New York.zbMATHGoogle Scholar
  30. Rachev, S. and Mittnik, S. (2000): Stable Paretian Models in Finance. Wiley, New York.zbMATHGoogle Scholar
  31. Raible, S. (2000): Lévy processes in finance: Theory, numerics, and empirical facts. PhD thesis, University of Freiburg.Google Scholar
  32. Samorodnitsky, G. and Taqqu, M. (1999): Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. Chapman & Hall/CRC, London.Google Scholar
  33. Samuelson, P. (1965): Rational theory of warrant pricing. Industrial Management Review 6:13–32.Google Scholar
  34. Sato, K.-I. (1999): Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  35. Schoutens, W. (2003): Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Mathematical StochasticsUniversity of FreiburgFreiburgGermany

Personalised recommendations