Stochastic Volatility Models with Long Memory

  • Clifford M. HurvichEmail author
  • Philippe SoulierEmail author


In this contribution, we consider models in discrete time that contain a latent process for volatility. The most well-known model of this type is the Long-Memory Stochastic Volatility (LMSV) model. We describe its main properties, discuss parametric and semiparametric estimation for these models, and give some generalizations and applications.


Asymptotic Normality Stochastic Volatility Preconditioned Conjugate Gradient Stochastic Volatility Model Absolute Return 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2001): Modeling and forecasting realized volatility. Journal of the American Statistical Association 96, 42–55.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Arteche, J. (2004): Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. Journal of Econometrics 119, 131–154.CrossRefMathSciNetGoogle Scholar
  3. Bertelli, S. and Caporin, M. (2002): A note on calculating autocovariances of long-memory processes. Journal of Time Series Analysis 23, 503–508.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Böttcher, A. and Silbermann, B. (1999): Introduction to Large Truncated Toeplitz Matrices. Springer Verlag, New York.zbMATHGoogle Scholar
  5. Breidt, F. J., Crato, N., and de Lima, P. (1998): The detection and estimation of long memory in stochastic volatility. Journal of Econometrics 83, 325–348.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Chen, W.W., Hurvich, C.M. and Lu, Y. (2006): On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series. Journal of the American Statistical Association 101, 812–822.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Deo, R. (1995): On GMM and QML estimation for the long memory stochastic volatility model. Working Paper.Google Scholar
  8. Deo, R.S. and Hurvich, C.M. (2001): On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models. Econometric Theory 17, 686–710.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Deo, R.S., Hsieh, M. and Hurvich, C.M. (2005): Tracing the source of long memory in volatility. Working paper.
  10. Deo, R.S., Hurvich, C.M. and Lu, Y. (2006): Forecasting realized volatility using a long memory stochastic volatility model: estimation, prediction and seasonal adjustment. Journal of Econometrics 131, 29–58.CrossRefMathSciNetGoogle Scholar
  11. Ding, Z., Granger, C. and Engle, R.F. (1993): A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 83–106.CrossRefGoogle Scholar
  12. Geweke, J. and Porter-Hudak, S. (1983): The estimation and application of long memory time series models. Journal of Time Series Analysis 4, 221–238.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Harvey, A.C. (1998): Long memory in stochastic volatility. In: Knight, J. and Satchell, S. (Eds.): Forecasting Volatility in Financial Markets, 307–320. Butterworth-Heinemann, London.Google Scholar
  14. Harvey, A.C., Ruiz, E. and Shephard, N. (1994): Multivariate stochastic volatility models. Review of Economic Studies 61, 247–264.zbMATHCrossRefGoogle Scholar
  15. Hosoya, Y. (1997): A limit theory for long-range dependence and statistical inference on related models. Annals of Statistics 25, 105–137.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Hurvich, C.M., Deo, R.S. and Brodsky, J. (1998): The mean squared error of Geweke and Porter-Hudak’s estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis 19, 19–46.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Hurvich, C.M., Moulines, E. and Soulier, Ph. (2005): Estimating long memory in volatility. Econometrica 73, 1283–1328.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Hurvich, C.M. and Ray, B.K. (2003): The local Whittle estimator of long-memory stochastic volatility. Journal of Financial Econometrics 1, 445–470.CrossRefGoogle Scholar
  19. Hurvich, C.M. and Soulier, Ph. (2002): Testing for long memory in volatility. Econometric Theory 18, 1291–1308.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Künsch, H.R. (1987): Statistical aspects of self-similar processes. In: Proceedings of the World Congress of the Bernoulli Society (Tashkent) 1, 67–74.Google Scholar
  21. Levinson, N. (1946): The Wiener RMS (root mean square) error criterion in filter design and prediction. Journal of Mathematical Physics 25, 261–178.MathSciNetGoogle Scholar
  22. Perez, A. and Ruiz, E. (2001): Finite sample properties of a QML estimator of stochastic volatility models with long memory. Economics Letters 70, 157–164.zbMATHCrossRefGoogle Scholar
  23. Robinson, P.M. (1995a): Log-periodogram regression of time series with long range dependence. Annals of Statistics 23, 1043–1072.Google Scholar
  24. Robinson, P.M. (1995b): Gaussian semiparametric estimation of long range dependence. Annals of Statistics 24, 1630–1661.CrossRefGoogle Scholar
  25. Robinson, P.M. (2001): The memory of stochastic volatility models. Journal of Econometrics 101, 195–218.zbMATHCrossRefMathSciNetGoogle Scholar
  26. Robinson, P.M. and Zaffaroni, P. (1997): Modelling nonlinearity and long memory in time series. Fields Institute Communications 11, 161–170.MathSciNetGoogle Scholar
  27. Robinson, P.M. and Zaffaroni, P. (1998): Nonlinear time series with long memory: a model for stochastic volatility. Journal of Statistical Planning and Inference 68, 359–371.zbMATHCrossRefMathSciNetGoogle Scholar
  28. Sowell, F. (1992): Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models. Journal of Econometrics 53, 165–188.CrossRefMathSciNetGoogle Scholar
  29. Surgailis, D. and Viano, M.C. (2002): Long memory properties and covariance structure of the EGARCH model. ESAIM: Probability and Statistics 6, 311–329.CrossRefMathSciNetGoogle Scholar
  30. Sun, Y. and Phillips, P.C.B. (2003): Nonlinear log-periodogram regression for perturbed fractional processes. Journal of Econometrics 115, 355–389.zbMATHCrossRefMathSciNetGoogle Scholar
  31. Taqqu, M.S. (2003): Fractional Brownian motion and long-range dependence In: Doukhan, P., Oppenheim, G. and Taqqu, M.S. (Eds.): Theory and Applications of Long-Range Dependence, 5–38. Birkhäuser, Boston.Google Scholar
  32. Taylor, S.J. (1986): Modelling Financial Time Series. Wiley, New York.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.New York UniversityNew YorkNY

Personalised recommendations