Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility

  • Borus JungbackerEmail author
  • Siem Jan Koopman


Estimating parameters in a stochastic volatility (SV) model is a challenging task and therefore much research is devoted in this area of estimation. This chapter presents an overview and a practical guide of the quasi-likelihood and the Monte Carlo likelihood methods of estimation. The concepts of the methods are straightforward and the implementation is based on Kalman filter, smoothing, simulation smoothing, mode calculation and Monte Carlo simulation. These methods are general, transparent and computationally fast; therefore, they provide a feasible way for the estimation of parameters in SV models. Various extensions of the SV model are considered and some details are provided for the effective implementation of the Monte Carlo methods. Some empirical illustrations are given to show that the methods can be successful in measuring the unobserved volatility in financial time series.


Stochastic Volatility Stock Index Observation Equation Stochastic Volatility Model Return Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, T., Bollerslev, T., Diebold, F. and Labys, P. (2003): Modelling and forecasting realized volatility. Econometrica 71, 529–626.CrossRefMathSciNetGoogle Scholar
  2. Andersen, T. G. and Sorensen, B. (1996): GMM estimation of a stochastic volatility model: a Monte Carlo study. Journal of Business and Economic Statistics 14, 328–352.CrossRefGoogle Scholar
  3. Black, F. (1976): Studies of stock price volatility changes. Proceedings of the Business and Economic Statistics Section, 177–181.Google Scholar
  4. Bollerslev, T. (1986): Generalised autoregressive conditional heteroskedasticity. Journal of Econometrics 51, 307–327.CrossRefMathSciNetGoogle Scholar
  5. Breidt, F. J. and Carriquiry, A. L. (1996): Improved quasi-maximum likelihood estimation for stochastic volatility models. In: Jack, W. O. J., Lee, C. and Zellner, A. (Eds.): Modelling and Prediction: Honoring Seymour Geisser. Springer, New York, 228–247.Google Scholar
  6. Breidt, F. J., Crato, N. and de Lima, P. (1998): On the detection and estimation of long memory in stochastic volatility. Journal of Econometrics 83, 325–348.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Brockwell, A. E. (2007): Likelihood-based analysis of a class of generalized long-memory time series models. Journal of Time Series Analysis 28, 386–407.CrossRefMathSciNetGoogle Scholar
  8. Davis, R. A. and Rodriguez-Yam, G. (2005): Estimation for state-space models based on a likelihood approximation. Statistica Sinica 15, 381–406.zbMATHMathSciNetGoogle Scholar
  9. de Jong, P. (1991): The diffuse Kalman filter. Annals of Statistics 19, 1073–83.zbMATHCrossRefMathSciNetGoogle Scholar
  10. de Jong, P. and Shephard, N. (1995): The simulation smoother for time series models. Biometrika 82, 339–50.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Durbin, J. and Koopman, S. J. (1997): Monte Carlo maximum likelihood estimation of non-Gaussian state space model. Biometrika 84, 669–84.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Durbin, J. and Koopman, S. J. (2001): Time Series Analysis by State Space Methods. Oxford University Press, Oxford.zbMATHGoogle Scholar
  13. Durbin, J. and Koopman, S. J. (2002): A simple and efficient simulation smoother for state space time series analysis. Biometrika 89, 603–16.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Engle, R. F. (1982): Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica 50, 987–1007.zbMATHCrossRefMathSciNetGoogle Scholar
  15. French, K. R., Schwert, G. W. and Stambaugh, R. F. (1987): Expected stock returns and volatility. J. Financial Economics 19, 3–29. Reprinted as pp. 61–86 in Engle, R.F.(1995): ARCH: Selected Readings. Oxford University Press, Oxford.CrossRefGoogle Scholar
  16. Fridman, M. and Harris, L. (1998): A maximum likelihood approach for non-gaussian stochastic volatility models. Journal Business and Economic Statistics 16, 284–291.CrossRefGoogle Scholar
  17. Fuller, W. A. (1996): Introduction to Time Series (2nd ed.) Wiley, New York.zbMATHGoogle Scholar
  18. Geweke, J. (1989): Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57, 1317–39.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Granger, C. W. J. and Joyeau, R. (1980): An introduction to long memory time series models and fractional differencing. Journal of Time Series Analysis 1, 15–39.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Harvey, A. C., Koopman, S. J. and Penzer, J. (1998): Messy time series. In: Fomby, T. B. and Hill, R. C. (Eds.): Advances in Econometrics 13, 103–143. JAI Press, New York.Google Scholar
  21. Harvey, A. C., Ruiz, E. and Shephard, N. (1994): Multivariate stochastic variance models. Review of Economic Studies 61, 247–64.zbMATHCrossRefGoogle Scholar
  22. Jacquier, E., Polson, N. and Rossi, P. (1994): Bayesian analysis of stochastic volatility models (with discussion). Journal of Business and Economic Statistics 12, 371–417.CrossRefGoogle Scholar
  23. Jungbacker, B. and Koopman, S. J. (2005): Model-based measurement of actual volatility in high-frequency data. In: Fomby, T. B. and Terrell, D. (Eds.): Advances in Econometrics. JAI Press, New York.Google Scholar
  24. Jungbacker, B. and Koopman, S. J. (2007): Monte Carlo estimation for nonlinear non-Gaussian state space models. Biometrika 94, 827–39.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Kim, S., Shephard, N. and Chib, S. (1998): Stochastic volatility: likelihood inference and comparison with arch models. Review of Economic Studies 65, 361–393.zbMATHCrossRefGoogle Scholar
  26. Koopman, S. J., Harvey, A. C., Doornik, J. A. and Shephard, N. (2007): Stamp 8.0: Structural Time Series Analyser, Modeller and Predictor. Timberlake Consultants, London.Google Scholar
  27. Koopman, S. J. and Hol-Uspensky, E. (2002): The Stochastic Volatility in Mean model: Empirical evidence from international stock markets. Journal of Applied Econometrics 17, 667–89.CrossRefGoogle Scholar
  28. Koopman, S. J., Shephard, N. and Doornik, J. A. (1999): Statistical algorithms for models in state space form using SsfPack 2.2. Econometrics Journal 2, 113–66. Scholar
  29. Koopman, S. J., Jungbacker, B. and Hol, E. (2005): Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. Journal of Empirical Finance 12, 445–75.CrossRefGoogle Scholar
  30. Koopman, S. J., Shephard, N. and Creal, D. (2007): Testing the assumptions behind importance sampling. Discussion paper, VU University, Amsterdam.Google Scholar
  31. Lee, K. M. and Koopman, S. J. (2004): Estimating stochastic volatility models: a comparison of two importance samplers. Studies in Nonlinear Dynamics and Econometrics 8, Art 5.Google Scholar
  32. Liesenfeld, R. and Jung, R. (2000): Stochastic volatility models: conditional normality versus heavy-tailed distributions. Journal of Applied Econometrics 15, 137–160.CrossRefGoogle Scholar
  33. Nocedal, J. and Wright, S. J. (1999): Numerical Optimization Springer, New York.zbMATHCrossRefGoogle Scholar
  34. Ray, B. and Tsay, R. (2000): Long- range dependence in daily stock volatilities. Journal of Business and Economic Statistics 18, 254–62.CrossRefGoogle Scholar
  35. Sandmann, G. and Koopman, S. J. (1998): Estimation of stochastic volatility models via Monte Carlo maximum likelihood. Journal of Econometrics 87, 271–301.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Shephard, N. (2005): Stochastic Volatility: Selected Readings. Oxford University Press, Oxford.zbMATHGoogle Scholar
  37. Shephard, N. and Pitt, M. K. (1997): Likelihood analysis of non-Gaussian measurement time series. Biometrika 84, 653–67.zbMATHCrossRefMathSciNetGoogle Scholar
  38. So, M. K. P. (2003): Posterior mode estimation for nonlinear and non-Gaussian state space models. Statistica Sinica 13, 255–274.zbMATHMathSciNetGoogle Scholar
  39. Taylor, S. J. (1986): Modelling Financial Time Series. Wiley, Chichester.zbMATHGoogle Scholar
  40. Tsiakas, I. (2006): Periodic stochastic volatility and fat tails. Journal of Financial Econometrics 4, 90–135.CrossRefGoogle Scholar
  41. Yu, J. (2005): On leverage in a stochastic volatility model. Journal of Econometrics 127, 165–78.CrossRefMathSciNetGoogle Scholar
  42. Zivot, E. (2008): Practical aspects of GARCH-Modelling. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 112–155. Springer, New York.Google Scholar
  43. Zivot, E., Wang, J. and Koopman, S. J. (2004): State space modeling in macroeconomics and finance using SsfPack in S+FinMetrics. In: Harvey, A. C., Koopman, S. J. and Shephard, N. (Eds.): State space and unobserved components models. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of EconometricsVU University AmsterdamDe BoelelaanThe Netherlands

Personalised recommendations