Skip to main content

Gene Regulatory Network Modeling: A Data Driven Approach

  • Chapter
Fuzzy Logic

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 215))

Abstract

In this chapter, a novel gene regulatory network gene regulatory network inference algorithm based on the fuzzy logic network fuzzy logic network is proposed and tested. The algorithm is intuitive and robust. The key motivation for this algorithm is that genes with regulatory relationships can be modeled via fuzzy logic, and the degrees of regulations can be represented as the accumulated distance during a period of time intervals. One unique feature of this algorithm is that it makes very limited prior assumptions concerning the modeling; hence the algorithm is categorized as a data-driven algorithm data-driven algorithm. As a non-parametric model, the algorithm is very useful when only limited a priori knowledge on the target microarray exists. Another characteristic of this algorithm is that the time-series microarray data have been treated as a dynamic gene regulatory network gene regulatory network, and the fuzzification of gene expression values makes the algorithm more agreeable to reality. We have deduced the dynamic properties of the FLN using the anneal approximation, and dynamic equations of the FLN have been analyzed. Based upon previous investigation results that in yeast protein-protein networks, as well as in the Internet and social networks, the distribution of connectivity follows the Zipf’s law, the criteria of parameter quantifications for the algorithm have been achieved. The algorithm was applied on the yeast cell-cycle dataset from Stanford Saccharomyces cerevisiae database which produced pleasing results. The computation also showed that a triplet search is suitable and efficient for the inference of gene regulatory networks. The chapter is organized as follows: first, the broader context of gene regulatory networks research is addressed. Then the definition of the FLN is given, and the dynamic properties of the FLN are deduced using the annealed approximation annealed approximation in Sect. FLNTheory. Combined with the Zipf’s law, the parameter quantification guidelines are achieved at the end of this section. In Sect. AlgorithmDesign, the algorithm is illustrated in detail with its data-driven rationale. Then, the algorithm’s inference results on Saccharomyces cerevisiae dataset are presented and analyzed in Sect. ComputationResults. Future research work with the algorithm is discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costa, I., F. Carvalho, and M. Souto (2003). Comparative study on proximity indices for cluster analysis of gene expression time series. Journal of Intelligent and Fuzzy Systems 13(2-4), 133–142.

    MATH  Google Scholar 

  2. Gulob, T., D. Slonim, F. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.

    Article  Google Scholar 

  3. Krishnapuram, B., L. Carin, and A. Hartemink (2002). Applying logistic regression and RVM to achieve accurate probabilistic cancer diagnosis from gene expression profiles. IEEE Workshop on Genomic Signal Processing and Statistics.

    Google Scholar 

  4. Strogatz, S. (2001). Exploring complex networks. Nature 410, 268–276.

    Article  Google Scholar 

  5. Kauffman, S. (1993). Origins of order: self-organization and selection in evolution. New York, NY: Oxford University Press.

    Google Scholar 

  6. Yuh, C., H. Bolouri, and E. Davision (1998). Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279(5358), 1896–1902.

    Article  Google Scholar 

  7. Akutsu, T., S. Miyano, and S. Kuhara (2000). Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16(8), 727–734.

    Article  Google Scholar 

  8. Shmulevich, I., E. Fougherty, S. Kim, and W. Zhang (2002). Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274.

    Article  Google Scholar 

  9. Plahte, E., T. Mestl, and S. Omholt (1994). Global analysis of steady points for systems of differential equations with sigmoid interactions. Dynamics and Stability of Systems 9(4), 275–291.

    MATH  MathSciNet  Google Scholar 

  10. Chen, T., H. He, and G. Church (1999). Modeling gene expression with differential equations. Pacific Symposium on Biocomputing, 29–40.

    Google Scholar 

  11. Gibson, M. and E. Mjolsness (2001). Modeling the activity of single genes, Chapter 1, pp. 1–48. Computational Methods for Molecular and Cellular Biology. MIT Press.

    Google Scholar 

  12. Murphy, K. and S. Mian (1999). Modeling gene expression data using dynamic Bayesian networks. Technical report, University of California at Berkeley, Berkeley, CA.

    Google Scholar 

  13. Friedman, N., M. Linial, I. Nachman, and D. Peer (2000). Learning Bayesian network structure of dynamic probabilistic network. Journal of Computational Biology 7(3-4), 601–620.

    Article  Google Scholar 

  14. Moler, E., D. C. Radisky, and I. Mian (2000). Integrating naive Bayes models and external knowledge to examine copper and iron homestasis in s. cerevisiae. Physiological Genomics 4, 127–135.

    Google Scholar 

  15. Nachman, I., A. Regev, and N. Friedman (2004). Inferring quantitative models of regulatory networks from expression data. Bioinformatics20(Suppl. 1), i248–i256.

    Article  Google Scholar 

  16. Beal, M., F. Falciani, Z. Ghahramani, C. Rangel, and D. Wild (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(5543), 349–356.

    Article  Google Scholar 

  17. Matsuno, H., A. Doi, M. Nagasaki, and S. Miyano (2000). Hybrid Petri net representation of gene regulatory network. Pacific Symposium on Biocomputing 5, 341–352.

    Google Scholar 

  18. Hashimoto, R., S. Kim, I.Shmulevich, W. Zhang, M. L. Bittner, and E. Dougherty (2004). Growing genetic regulatory networks from seed genes. Bioinformatics 20(8), 1241–1247.

    Article  Google Scholar 

  19. TeichMann, S. and M. Babu (2004). Gene regulatory network growth by duplication. Nature Genetics 36(5), 492–496.

    Article  Google Scholar 

  20. Sprinzak, D. and M. Elowitz (2005). Reconstruction of genetic circuits. Nature 438(7067), 443–448.

    Article  Google Scholar 

  21. Weaver, D., C. Workman, and G. D. Stormo (1999). Modeling regulatory networks with weight matrices. Pacific Symposium on Biocomputing, 112–123.

    Google Scholar 

  22. Vohradsky, J. (2001). Neural network model of gene expression. The FASEB Journal 15, 846–854.

    Article  Google Scholar 

  23. Khan, J., J. Wei, M. Ringner, L. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. Antonescu, C. Peterson, and P. Meltzer (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 658–659.

    Article  Google Scholar 

  24. Mestl, T., E. Plahte, and S. Omholt (1995). A mathematical framework for describing and analyzing gene regulatory networks. Journal of Theoretical Biology 176(2), 291–300.

    Article  MathSciNet  Google Scholar 

  25. Kwon, A., H. Hoos, and R. Ng (2003). Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19(8), 905–912.

    Article  Google Scholar 

  26. Joseph, Z. (2004). Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503.

    Article  Google Scholar 

  27. Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103.

    Article  Google Scholar 

  28. John, W. (2002). Deciphering gene expression regulatory networks. Current Opinion in Genetics and Development 12, 130–136.

    Article  Google Scholar 

  29. Velculescu, V., L. Zhang, B. Vogelstein, and K. Kinzler (1995). Serial analysis of gene expression. Science 270(5235), 484–487.

    Article  Google Scholar 

  30. Georgantas, R., V. Tanadve, M. Malehorn, S. Heimfeld, C. Chen, L. Carr, F. Martinez-Murillo, G. Riggins, J. Kowalski, and C. Civin (2004). Microarray and serial analysis of gene expression analysis identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Research 64, 4434–4441.

    Article  Google Scholar 

  31. Lee, T., N. Rinaldi, F. Robert, D. Odom, Z. Joseph, G. Gerber, N. Hannettt, C. T. Harbinson, C. M. Thompson, I. Simon, J. Zeitlinger, E. Jennings, H. Murray, D. B. Gordon, B. Ren, J. Wyrick, J. Tagne, T. Volkert, E. Fraenkel, D. Gifford, and R. Young (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.

    Article  Google Scholar 

  32. J.Qian, J. Lin, N. Luscombe, H. Yu, and M. Gerstein (2003). Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19(15), 1917–1926.

    Article  Google Scholar 

  33. Fung, E., V. Thulasiraman, S. R. Weinberger, and E. Dalmasso (2001). Protein biochips for differential profiling. Current Opinion in Biotechnology 12, 65–69.

    Article  Google Scholar 

  34. Huang, S. and D. Ingber (2000). Shape-dependent control of cell growth, differentiation and apoptosis: switching between attractors in cell regulatory networks. Experimental Cell Research 261, 91–103.

    Article  Google Scholar 

  35. Akutsu, T. and S. Miyano (2000). Algorithm for inferring qualitative models of biological networks. Pacific Symposium on BioComputing, 293–304.

    Google Scholar 

  36. Waelbroeck, H. and F. Zertuche (1999). Discrete chaos. Journal of Physics A: Mathematical and General 32, 175–189.

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, P., Y. Cao, J. Robinson, and A. Tokuta (2003). A study of the two gene network - the simplest special case of SORE (self organizable regulating engine). Proceedings of 7th Joint Conference on Information Science, 1716–1720.

    Google Scholar 

  38. Cao, Y., P. Wang, and A. Tokuta (2004). SORE (self organizable regulating engine) - a possible building block for a “biogizing” control system. Proceedings of 4th International Symposium on Intelligent Manufacturing, 42–48.

    Google Scholar 

  39. Cao, Y., P. Wang, and A. Tokuta (2003). A study of two gene network. BISC FLINT-CIBI 7th Joint Workshop on Soft Computing for Internet and Bioinformatics, UC Berkeley.

    Google Scholar 

  40. Zawidzki, T. (1998). Competing models of stability in complex, evolving systems: Kauffman vs. Simon. Biology and Philosophy 13(4), 541–554.

    Article  Google Scholar 

  41. Woolf, P. and Y. Wang (2000). A fuzzy logic approach to analyzing gene expression data. Physiological Genomics 3, 9–15.

    Google Scholar 

  42. Chen, H. C., H. Lee, T. Lin, W. Li, and B. Chen (2004). Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 20(12), 1914–1927.

    Article  Google Scholar 

  43. Sokhansanj, B., J. Fitch, J. Quong, and A. Quong (2004). Linear fuzzy gene network models obtained from microarray data by exhaustive search. BMC Bioinformatics 5(108).

    Google Scholar 

  44. Sokhansanj, B. and J. Fitch (2001). URC fuzzy modeling and simulation of gene regulation. In 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Instanbul, Turkey.

    Google Scholar 

  45. Cao, Y., P. Wang, and A. Tokuta (2005). Gene Regulating Network Discovery, Volume 5 of Studies in Computational Intelligence, Chapter 3, pp. 49–78. Springer-Verlag GmbH.

    Google Scholar 

  46. Cao, Y., P. Wang, and A. Tokuta (2006). S. pombe regulatory network construction using the fuzzy logic network. Poster, LSS Computational Systems Bioinformatics Conference.

    Google Scholar 

  47. Resconi, G., Y. Cao, and P. Wang (2006). Fuzzy Biology. Proceedings of 5th International Symposium on Intelligent Manufacturing Systems. 29–31.

    Google Scholar 

  48. Cao, Y., H. Clark, and P. Wang (2006). Fuzzy logic network (FLN) on gene regulatory network modeling. Proceedings of International Conference on Intelligent systems and Knowledge Engineering.

    Google Scholar 

  49. Reiter, C. (2002). Fuzzy automata and life. Complexity 3(7), 19–29.

    Article  MathSciNet  Google Scholar 

  50. Derrida, B. and Y. Pomeau (1986). Random networks of automata: a simple annealed approximation. Europhysics Letters 1, 45–49.

    Google Scholar 

  51. Derrida, B. and D. Stauffer (1986). Phase transitions in two-dimensional Kauffman cellular automata. Europhysics Letters 2, 739–745.

    Google Scholar 

  52. Qu, X., M. Aldana, and L. Kadanoff (2002). Numerical and theoretical studies of noise effects in the Kauffman model. Journal of Statistical Physics 109(5-6), 967–986.

    Article  MATH  Google Scholar 

  53. Luque, B. and R. Sole (1997a). Controlling chaos in random Boolean networks. Europhysics Letter 37(9), 597–602.

    Article  Google Scholar 

  54. Somogyvari, Z. and S. Payrits (2000). Length of state cycles of random Boolean networks: an analytic study. Journal of Physics A: Mathematical and General 33, 6699–6706.

    Article  MATH  MathSciNet  Google Scholar 

  55. Thieffry, D. and D. Romero (1999). The modularity of biological regulatory networks. Biosystems 50(11), 49–59.

    Article  Google Scholar 

  56. Luque, B. and R. Sole (1997). Phase transitions in random networks: simple analytic determination of critical points. Physical Review E 55(1), 257–260.

    Article  Google Scholar 

  57. Sole, R. and B. Luque (1994). Phase transitions and antichaos in generalized Kauffman networks. Physical Letters A 196(1-2), 331–334.

    Article  MathSciNet  Google Scholar 

  58. Sole, R., B. Luque, and S. Kauffman (2000). Phase transition in random network with multiple states. Technical report, Santa Fe Institute.

    Google Scholar 

  59. Kauffman, S., C. Peterson, B. Samuelsson, and C. Troein (2004, December). Genetic networks with canalyzing Boolean rules are always stable. PNAS 101(49), 17102–17107.

    Article  Google Scholar 

  60. Uetz, P., L. Giot, G. Cagney, T. Mansfield, R. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. Rothberg (2000). A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403, 623–627.

    Article  Google Scholar 

  61. Spellman, P., G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D. Botstein, and B. Futcher (1998). Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, molecular biology of the cell. Molecular Biology of the Cell 9, 3273–3297.

    Google Scholar 

  62. Milo, R., S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M.Sheffer, and U. Alon (2004). Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542.

    Article  Google Scholar 

  63. Shen-Orr, S., R. Milo, S. Mangan, and U. Alon (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31, 64–68.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Y., Wang, P.P., Tokuta, A. (2007). Gene Regulatory Network Modeling: A Data Driven Approach. In: Wang, P.P., Ruan, D., Kerre, E.E. (eds) Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71258-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71258-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71257-2

  • Online ISBN: 978-3-540-71258-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics