Advertisement

Tsunami surge in a river: a hydraulic jump in an inhomogeneous channel

  • Jean-Guy Caputo
  • Y. A. Stepanyants

Abstract

A tsunami or storm surge propagating in a river is a very energetic phenomenon and not many human constructions can resist it. However studying its propagation can help identify dangerous regions where hopefully human habitat will be avoided. As in a wave guide the tsunami or bore will be influenced by the variable section (depth or width) of the channel. We will not consider here the case of the ocean where the bathymetry plays a crucial role in fixing the wave speed but a channel or river where the depth and width vary slowly compared with the wave length.

Keywords

Storm Surge Vries Equation Tide Amplitude Hydraulic Jump Riemann Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mazumder N. C. and Bose S. (1995). J. of waterway, port, coastal and ocean engineering, 167–175Google Scholar
  2. [2]
    Le Hir P. et Silva Jacinto R. (2001). Programme Scientifique Seine-Aval Vol. 2, Editions Ifremer, (2001).Google Scholar
  3. [3]
    Tsuji Y., Yanuma T., Murata I. and Fujiwara C. (1991) Natural Hazards 4:257–266CrossRefGoogle Scholar
  4. [4]
    Caputo J. G. and Stepanyants Y. (2003) Nonlinear processes in geophysics, 10:1–18Google Scholar
  5. [5]
    Whitham G. B. (1974) Linear and Nonlinear Waves. J. Wiley & SonsGoogle Scholar
  6. [6]
    http://www.comsol.comGoogle Scholar
  7. [7]
    Russel J. S., Report on waves, 14th meeting of the British association for the advancement of science (BAAS), 1844.Google Scholar
  8. [8]
    J. Hammack and H. Segur, J. Fluid Mech., 1974, v. 65, 239.CrossRefGoogle Scholar
  9. [9]
    J. Hammack and H. Segur, J. Fluid Mech., 1978, v. 84, 337.CrossRefGoogle Scholar
  10. [10]
    J. Hammack and H. Segur, J. Fluid Mech., 1978, v. 84, 359.CrossRefGoogle Scholar
  11. [11]
    Pelinovsky E. N., Stepanyants Yu. A., Talipova T. G. Nonlinear dispersion model of sea waves in the coastal zone. — J. Korean Soc. Coastal Ocean Eng., 1993, v. 5, n. 4, 307–317.Google Scholar
  12. [12]
    Pelinovsky E. N., Stepanyants Yu. A. On the estimation of the time of solitons creations from the initial perturbations in the framework of Korteweg-de Vries equation. — Izv. VUZov, Radiofizika, 1981, v. 24, n. 7, 908–911 (in Russian).Google Scholar
  13. [13]
    Marchant T. R., Smyth N. F. Initial-boundary problems for the Korteweg-de Vries equations. — IMA J. Appl. Math., 1991, v. 47, 247–264.CrossRefGoogle Scholar
  14. [14]
    Marchant T. R., Smyth N. F. The initial boundary problem for the Korteweg-de Vries equation on negative quarter-plane. — Proc. R. Soc. Lond. A, 2002, v. 458, 857–871.CrossRefGoogle Scholar
  15. [15]
    Osborne A. R. The inverse scattering transform: tools for the nonlinear Fourier analysis and filtering of ocean surface waves. — Chaos, solitons and fractals, 1995, v. 5, 2623–2637.CrossRefGoogle Scholar
  16. [16]
    Mei C. C. The Applied Dynamics of Ocean Surface Waves. — John Wiley & Sons, New York, 1983.Google Scholar
  17. [17]
    Stepanyants Yu. A. Relationship between kinetic and potential energies in internal waves in the presence of shear currents. — Sov. Phys. Izvestia. Atmospheric and Oceanic Physics, 1985, v. 21, n. 6, 518–520 (English translation of the Russian journal).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jean-Guy Caputo
    • 1
    • 2
  • Y. A. Stepanyants
    • 3
  1. 1.Laboratoire de MathématiquesINSA de RouenMont-Saint-Aignan cedexFrance
  2. 2.Laboratoire de Physique théorique et modelisationUniversité de Cergy-Pontoise and C.N.R.S.France
  3. 3.Reactor OperationsANSTOMenai (Sydney)Australia

Personalised recommendations