Water waves generated by a moving bottom

  • Denys Dutykh
  • Frédéric Dias


Waves at the surface of a liquid can be generated by various mechanisms: wind blowing on the free surface, wavemaker, moving disturbance on the bottom or the surface, or even inside the liquid, fall of an object into the liquid, liquid inside a moving container, etc. In this paper, we concentrate on the case where the waves are created by a given motion of the bottom. One example is the generation of tsunamis by a sudden seafloor deformation.


Free Surface Water Wave Tsunami Source Tsunami Generation Bottom Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Todorovska MI, Trifunac MD (2001) Generation of tsunamis by a slowly spreading uplift of the sea-floor. Soil Dynamics and Earthquake Engineering 21:151–167CrossRefGoogle Scholar
  2. [2]
    Neetu S, Suresh I, Shankar R, Shankar D, Shenoi SSC, Shetye SR, Sundar D, Nagarajan B (2005) Comment on “The Great Sumatra-Andaman Earthquake of 26 December 2004”. Science 310:1431a–1431bCrossRefGoogle Scholar
  3. [3]
    Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RC, Beck SL, Bilek SL, Brudzinski MR, Butler R, DeShon HR, Ekstrom G, Satake K, Sipkin S (2005) The great Sumatra-Andaman earthquake of 26 December 2004. Science 308:1127–1133CrossRefGoogle Scholar
  4. [4]
    Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39:422–443Google Scholar
  5. [5]
    Boussinesq MJ (1871) Théorie de l’rsintumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C.R. Acad. Sci. Paris 72:755–759Google Scholar
  6. [6]
    Peregrine DH (1966) Calculations of the development of an undual bore. J Fluid Mech 25:321–330CrossRefGoogle Scholar
  7. [7]
    Benjamin TB, Bona JL, Mahony JJ (1972) Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Royal Soc. London Ser. A 272:47–78CrossRefGoogle Scholar
  8. [8]
    Podyapolsky GS (1968) The generation of linear gravitational waves in the ocean by seismic sources in the crust. Izvestiya, Earth Physics, Akademia Nauk SSSR 1:4–12, in RussianGoogle Scholar
  9. [9]
    Kajiura K (1963) The leading wave of tsunami. Bull. Earthquake Res. Inst., Tokyo Univ. 41:535–571Google Scholar
  10. [10]
    Gusyakov VK (1972) Generation of tsunami waves and ocean Rayleigh waves by submarine earthquakes. In: Mathematical problems of geophysics, vol 3, pages 250–272, Novosibirsk, VZ SO AN SSSR, in RussianGoogle Scholar
  11. [11]
    Alekseev AS, Gusyakov VK (1973) Numerical modelling of tsunami and seismo-acoustic waves generation by submarine earthquakes. In: Theory of diffraction and wave propagation, vol 2, pages 194–197, Moscow-Erevan, in RussianGoogle Scholar
  12. [12]
    Gusyakov VK (1976) Estimation of tsunami energy. In: Ill-posed problems of mathematical physics and problems of interpretation of geophysical observations, pages 46–64, Novosibirsk, VZ SO AN SSSR, in RussianGoogle Scholar
  13. [13]
    Carrier GF (1971) The dynamics of tsunamis. In: Mathematical Problems in the Geophysical Sciences, Lectures in Applied Mathematics, vol 13, pages 157–187, American Mathematical Society, in RussianGoogle Scholar
  14. [14]
    van den Driessche P, Braddock RD (1972) On the elliptic generating region of a tsunami. J. Mar. Res. 30:217–226Google Scholar
  15. [15]
    Braddock RD, van den Driessche P, Peady GW (1973) Tsunami generation. J Fluid Mech 59:817–828CrossRefGoogle Scholar
  16. [16]
    Sabatier P (1986) Formation of waves by ground motion. In: Encyclopedia of Fluid Mechanics, pages 723–759, Gulf Publishing CompanyGoogle Scholar
  17. [17]
    Hammack JL (1973) A note on tsunamis: their generation and propagation in an ocean of uniform depth. J Fluid Mech 60:769–799CrossRefGoogle Scholar
  18. [18]
    Dutykh D, Dias F, Kervella Y (2006) Linear theory of wave generation by a moving bottom. C. R. Acad. Sci. Paris, in pressGoogle Scholar
  19. [19]
    Todorovska MI, Hayir A, Trifunac MD (2002) A note on tsunami amplitudes above submarine slides and slumps. Soil Dynamics and Earthquake Engineering 22:129–141CrossRefGoogle Scholar
  20. [20]
    Keller JB (1961) Tsunamis: water waves produced by earthquakes. In: Proceedings of the Conference on Tsunami Hydrodynamics 24, pages 154–166, Institute of Geophysics, University of HawaiiGoogle Scholar
  21. [21]
    Filon LNG (1928) On a quadrature formula for trigonometric integrals. Proc. Royal Soc. Edinburgh 49:38–47Google Scholar
  22. [22]
    Ursell F (1953) The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. Soc. 49:685–694CrossRefGoogle Scholar
  23. [23]
    Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75:1135–1154Google Scholar
  24. [24]
    Steketee JA (1958) On Volterra’s dislocation in a semi-infinite elastic medium. Can. J. Phys. 36:192–205Google Scholar
  25. [25]
    Ben-Menahem A, Singh SJ, Solomon F (1969) Static deformation of a spherical earth model by internal dislocations. Bull. Seism. Soc. Am. 59:813–853Google Scholar
  26. [26]
    Ben-Mehanem A, Singh SJ, Solomon F (1970) Deformation of an homogeneous earth model finite by dislocations. Rev. Geophys. Space Phys. 8:591–632CrossRefGoogle Scholar
  27. [27]
    Smylie DE, Mansinha L (1971) The elasticity theory of dislocations in real earth models and changes in the rotation of the earth. Geophys. J. Royal Astr. Soc. 23:329–354Google Scholar
  28. [28]
    Masterlark, T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J. Geophys. Res. 108(B11):2540CrossRefGoogle Scholar
  29. [29]
    Volterra V (1907) Sur l’équilibre des corps élastiques multiplement connexes. Annales Scientifiques de l’Ecole Normale Supérieure 24(3):401–51Google Scholar
  30. [30]
    Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, New YorkGoogle Scholar
  31. [31]
    Maruyama T (1964) Static elastic dislocations in an infinite and semi-infinite medium. Bull. Earthquake Res. Inst., Tokyo Univ. 42:289–368Google Scholar
  32. [32]
    Mindlin, RD (1936) Force at a point in the interior of a semi-infinite medium. Physics 7:195–202CrossRefGoogle Scholar
  33. [33]
    Mindlin RD, Cheng DH (1950) Nuclei of strain in the semi-infinite solid. J. Appl. Phys. 21:926–930CrossRefGoogle Scholar
  34. [34]
    Westergaard HM (1935) Bull. Amer. Math. Soc. 41:695CrossRefGoogle Scholar
  35. [35]
    Press F (1965) Displacements, strains and tilts at tele-seismic distances. J. Geophys. Res. 70:2395–2412CrossRefGoogle Scholar
  36. [36]
    Okada Y (1992) Internal deformation due to shear and tensile faults in a halfspace. Bull. Seism. Soc. Am. 82:1018–1040Google Scholar
  37. [37]
    Chinnery MA (1963) The stress changes that accompany strike-slip faulting. Bull. Seism. Soc. Am. 53:921–932Google Scholar
  38. [38]
    Sato R, Matsu’ura M ((1974) Strains and tilts on the surface of a semi-infinite medium. J. Phys. Earth 22:213–221Google Scholar
  39. [39]
    Iwasaki T, Sato R (1979) Strain field in a semi-infinite medium due to an inclined rectangular fault. J. Phys. Earth 27:285–314Google Scholar
  40. [40]
    Gradshteyn IS, Ryzhik M (2000) Tables of Integrals, Series, and Products, 6th edition, Academic Press, Orlando, FloridaGoogle Scholar
  41. [41]
    González FI, Bernard EN, Meinig C, Eble MC, Mofjeld HO, Stalin S ((2005) The NTHMP tsunameter network. Natural Hazards 35:25–39CrossRefGoogle Scholar
  42. [42]
    Erdélyi A (1956) Asymptotic Expansions, Dover PublicationsGoogle Scholar
  43. [43]
    Murray JD (1984) Asymptotic Analysis, SpringerGoogle Scholar
  44. [44]
    Petrashen GI, Latyshev KP (1971) Asymptotic Methods and Stochastic Models in Problems of Wave Propagation, American Mathematical SocietyGoogle Scholar
  45. [45]
    Bleistein N, Handelsman RA (1986) Asymptotic Expansions of Integrals, Dover PublicationsGoogle Scholar
  46. [46]
    Egorov YuV, Shubin MA (1994) Elements of the Modern Theory. Equations with Constant Coefficients. In: Partial Differential Equations, Encyclopedia of Mathematical Sciences, vol 2. SpringerGoogle Scholar
  47. [47]
    Kelvin Lord (W. Thomson) (1887) On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Phil. Mag. 23(5):252–255Google Scholar
  48. [48]
    Hammack JL, Segur H (1974) The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. J Fluid Mech 65:289–314CrossRefGoogle Scholar
  49. [49]
    Hammack JL, Segur H (1978) The Korteweg-de Vries equation and water waves. Part 3. Oscillatory waves. J Fluid Mech 84:337–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Denys Dutykh
    • 1
  • Frédéric Dias
    • 1
  1. 1.Centre de Mathématiques et de Leurs ApplicationsEcole Normale Supérieure de CachanCachan cedexFrance

Personalised recommendations