Skip to main content

Using XCS to Describe Continuous-Valued Problem Spaces

  • Conference paper
Book cover Learning Classifier Systems (IWLCS 2003, IWLCS 2004, IWLCS 2005)

Abstract

Learning classifier systems have previously been shown to have some application in single-step tasks. This paper extends work in the area by applying the classifier system to progressively more complex multi-modal test environments, each with typical search space characteristics, convex/non-convex regions of high performance and complex interplay between variables. In particular, two test environments are used to investigate the effects of different degrees of feature sampling, parameter sensitivity, training set size and rule subsumption. Results show that XCSR is able to deduce the characteristics of such problem spaces to a suitable level of accuracy. This paper provides a foundation for the possible use of XCS as an exploratory tool that can provide information from conceptual design spaces enabling a designer to identify the best direction for further investigation as well as a better representation of their design problem through redefinition and reformulation of the design space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, G.: The Effects of Adding Noise During Backpropagation Training on a Generalization Performance. Neural Computation 8, 643–674 (1996)

    Article  Google Scholar 

  2. Beasley, D., Bull, D., Martin, R.: A Sequential Niche Technique for Multimodal Function Optimisation. Evolutionary Computation 1(2), 101–125 (1993)

    Article  Google Scholar 

  3. Bernadó, E., Llorà, X., Garrell, J.: XCS and GALE: a Comparative Study of Two Learning Classifier Systems with Six Other Learning Algorithms on Classification Tasks. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–133. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases, University of California, Irvine. (1998), Available at http://www.ics.uci.edu/~mlearn/MLRepository.html

  5. Bonham, C.: Evolutionary Decomposition of Complex Design Spaces. PhD Thesis, University of Plymouth (2000)

    Google Scholar 

  6. Bonham, C., Parmee, I.: An Investigation of Exploration and Exploitation Within Cluster-Oriented Genetic Algorithms (COGAs). In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference 1999, pp. 1491–1497. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  7. Bull, L., Wyatt, D., Parmee, I.: Initial Modifications to XCS for use in Interactive Evolutionary Design. In: Guervós, J.J.M., et al. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 568–577. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Butz, M., Wilson, S.: An algorithmic description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp. 973–978 (2001)

    Google Scholar 

  10. Hart, P.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 14, 515–516 (1968)

    Article  Google Scholar 

  11. Holmes, J.: A Genetics-Based Machine Learning Approach to Knowledge Discovery in Clinical Data. Journal of the American Medical Informatics Association Supplement 883 (1996)

    Google Scholar 

  12. Holmström, L., Koistinen, P.: Using Additive Noise in Back-Propagation Training. IEEE Transactions on Neural Networks 3, 24–38 (1992)

    Article  Google Scholar 

  13. Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis 6(5), 429–450 (2002)

    MATH  Google Scholar 

  14. Kocis, L., Whiten, W.J.: Computational Investigations in Low Discrepancy Sequences. ACM Transactions on Mathematical Software 23(2), 266–294

    Google Scholar 

  15. Kohavi, R., Provost, F.: Glossary of Terms. Machine Learning 30, 271–274 (1998)

    Article  Google Scholar 

  16. Kononenko, I., Bratko, I.: Information-Based Evaluation Criterion for Classifier’s Performance. Machine Learning 6, 67–80 (1991)

    Google Scholar 

  17. Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Data Sets: One-Sided Sampling. In: Fisher, D. (ed.) Proceedings of the 14th International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  18. Kubat, M., Holte, R., Matwin, S.: Learning when Negative Examples Abound. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 146–153. Springer, Heidelberg (1997)

    Google Scholar 

  19. Laurikkala, J.: Improving Identification of Difficult Small Classes by Balancing Class Distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 63–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Lee, S.: Noisy Replication in Skewed Binary Classification. Computational Statistics and Data Analysis 34, 165–191 (2000)

    Article  MATH  Google Scholar 

  21. Lewis, D., Gale, W.: A Sequential Algorithm for Training Text Classifiers. In: Proceedings of SIGIR-94, 17th ACM International Conference on Research and Development in Information Retrieval, pp. 3–12. ACM Press, New York (1994)

    Google Scholar 

  22. Ling, C., Li, C.: Data Mining for Direct Marketing: Problems and Solutions. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-98), pp. 73–79. AAAI Press, Menlo Park (1998)

    Google Scholar 

  23. Parmee, I.: The Maintenance of Search Diversity for Effective Design Space Decomposition using Cluster-Oriented Genetic Algorithms (COGAs) and Multi-Agent Strategies (GAANT). In: Proceedings of 2nd International Conference on Adaptive Computing in Engineering Design and Control, PEDC, University of Plymouth, pp. 128–138 (1996)

    Google Scholar 

  24. Parmee, I.: Improving Problem Definition through Interactive Evolutionary Computation. Journal of Artificial Intelligence in Engineering Design, Analysis and Manufacture 16(3) (2002)

    Google Scholar 

  25. Parmee, I., Bonham, C.: Improving Cluster-Oriented Genetic Algorithms for High-Performance Region Identification. In: Proceedings US United Engineering Foundation’s ’Optimisation in Industry’ Conference, Tuscany, Italy 2001, Springer, Heidelberg (2001)

    Google Scholar 

  26. Raviv, Y., Intrator, N.: Bootstrapping with Noise: An Effective Regularisation Technique. Connection Science, Special issue on Combining Estimators 8, 356–372 (1995)

    Google Scholar 

  27. Stone, C., Bull, L.: For Real! XCS with Continuous-Valued Inputs. Evolutionary Computation 11(3), 299–336 (2003)

    Article  Google Scholar 

  28. Swets, J.: Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

  29. Tomek, I.: Two Modifications to CNN. IEEE Transactions on Systems, Man and Communications 6, 769–772 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Toussaint, G.: A Counter-Example to Tomek’s Consistency Theorem for a Condensed Nearest Neighbor Decision Rule. Pattern Recognition Letters 15, 797–801 (1994)

    Article  MATH  Google Scholar 

  31. Weiss, G., Provost, F.: The Effect of Class Distribution on Classifier Learning: An Empirical Study. Technical Report ML-TR-44, Rutgers University (2001)

    Google Scholar 

  32. Wilson, D., Martinez, T.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  33. Wilson, D., Martinez, T.: Reduction Techniques for Exemplar-Based Learning Algorithms. Machine Learning 38(3), 257–286 (1998)

    Article  Google Scholar 

  34. Wilson, S.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  35. Wilson, S.: Get real! XCS with Continuous-valued inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–222. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  36. Wilson, S.: Compact Rulesets for XCSI. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 197–210. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  37. Wilson, S.: Mining Oblique Data with XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 158–177. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tim Kovacs Xavier Llorà Keiki Takadama Pier Luca Lanzi Wolfgang Stolzmann Stewart W. Wilson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wyatt, D., Bull, L., Parmee, I. (2007). Using XCS to Describe Continuous-Valued Problem Spaces. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS IWLCS IWLCS 2003 2004 2005. Lecture Notes in Computer Science(), vol 4399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71231-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71231-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71230-5

  • Online ISBN: 978-3-540-71231-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics