Skip to main content

Pseudomonas Siderophores and their Biological Significance

  • Chapter
Microbial Siderophores

Part of the book series: Soil Biology ((SOILBIOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony U, Christophersen C, Nielse PH, Gram L, Petersen BO (1995) Pseudomonine, an isoxazolidone with siderophoric activity from Pseudomonas fluorescens AH2 isolated from lake Victoria Nile perch. J Nat Prod 58:1786–1789

    Article  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Inter 15:1147–1156

    Article  CAS  Google Scholar 

  • Baysse C, Meyer JM, Plesiat P, Geoffroy V, Michel-Briand Y, Cornelis P (1999) Uptake of pyocin S3 occurs through the outer membrane ferripyoverdine type II receptor of Pseudomonas aeruginosa. J Bacteriol 181:3849–3851

    PubMed  CAS  Google Scholar 

  • Baysse C, De Vos D, Naudet Y, Vandermonde A, Ochsner U, Meyer JM, Budzikiewicz H, Fuchs R, Cornelis P (2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146:2425–2434

    PubMed  CAS  Google Scholar 

  • Beare PA, For RJ, Martin LW, Lamont IL (2003) Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207

    Article  PubMed  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and the production of increased growth-response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    CAS  Google Scholar 

  • Britigan BE, Rasmussen GT, Cox CD (1997) Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect Immun 65:1071–1076

    PubMed  CAS  Google Scholar 

  • Budzikiewicz H (2003) Heteroaromatic monothiocarboxylic acids from Pseudomonas spp. Biodegradation 14:65–72

    Article  PubMed  CAS  Google Scholar 

  • Buyer JS, Leong J (1986) Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J Biol Chem 261:791–794

    PubMed  CAS  Google Scholar 

  • Coffman TJ, Cox CD, Edeker BL, Britigan BE (1990) Possible role of bacterial siderophores in inflammation. J Clin Invest 86:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  PubMed  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  PubMed  CAS  Google Scholar 

  • Duffy BK, Défago G (2000) Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66:3142–3150

    Article  PubMed  CAS  Google Scholar 

  • Dybas MJ, Tatara GM, Criddle CS (1995) Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl Environ Microbiol 61:758–762

    PubMed  CAS  Google Scholar 

  • Farmer KL, Thomas MS (2004) Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulphur availability. J Bacteriol 186:270–277

    Article  PubMed  CAS  Google Scholar 

  • Ghysels B, Thi Min Dieu B, Beatson SA, Pirnay JP, Ochsner UA, Vasil ML, Cornelis P (2004) FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Goldberg J (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57

    Article  PubMed  CAS  Google Scholar 

  • Grohmann U, Fallarino F, Pucetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Brew BJ (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 7:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Chemother 43:1317–1323

    CAS  Google Scholar 

  • Handfield M, Lehoux DE, Sanschagrin F, Mahan MJ, Woods DE, Levesque RC (2000) In vivo-induced genes in Pseudomonas aeruginosa. Infect Immun 68:2359–2362

    Article  PubMed  CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black-root-rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79:584–589

    Google Scholar 

  • Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–271

    Google Scholar 

  • Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003a) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett 227:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kurnasov O, Goral V, Colabrov K, Gerdes S, Anantha S, Osterman A, Begley TP (2003b) NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol 10:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling mediates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99:7072–7077

    Article  PubMed  CAS  Google Scholar 

  • Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842

    Article  PubMed  CAS  Google Scholar 

  • Leach LH, Lewis TA (2006) Identification and characterization of Pseudomonas membrane transporters necessary for utilization of the siderophore pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Microbiology 152:3157–3166

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PHAM, Schippers B (1996) Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–154

    Article  CAS  Google Scholar 

  • Lemanceau P, Bakker PA, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    PubMed  CAS  Google Scholar 

  • Lewis TA, Cortese MS, Sebat JL, Green TL, Lee CH, Crawford RL (2000) A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Environ Microbiol 2:407–416

    Article  PubMed  CAS  Google Scholar 

  • Lewis TA, Leach L, Morales S, Austin PR, Hartwell HJ, Kaplan B, Forker C, Meyer, JM (2004) Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 6:159–169

    Article  PubMed  CAS  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Matthijs S, Baysse C, Koedam N, Abbaspour-Tehrani K, Verheyden L, Budzikiewicz H, Schäfer M, Hoorelbeke B, Meyer JM, De Greve H, Cornelis P (2004) The Pseudomonas siderophore quinolobactin is synthezised from xanthurenic acid, an intermediate from the kynurenine pathway. Mol Microbiol 52:371–384

    Article  PubMed  CAS  Google Scholar 

  • Matthijs S, Abbaspour-Therani K, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523

    PubMed  CAS  Google Scholar 

  • Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PA (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  PubMed  CAS  Google Scholar 

  • Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    Article  PubMed  CAS  Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, Anjaiah V, Cornelis P (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400 whose production is repressed by the cognate pyoverdine. Appl Env Microbiol 66:487–492

    Article  CAS  Google Scholar 

  • Mossialos D, Ochsner U, Baysse C, Chablain P, Pirnay JP, Koedam N, Budzikiewicz H, Uria-Fernandez D, Schäfer M, Ravel J, Cornelis P (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Bélanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  • Ongena M, Jacques P, Delfosse P, Thonart P (2001) Unusual traits of the pyoverdin-mediated iron acquisition system in Pseudomonas putida BTP1. Biometals 15:1–13

    Article  Google Scholar 

  • Paulitz TC, Loper JE (1991) Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81:930–935

    Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vandersluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995) utilization of heterologous siderophores and rhizosphere competence of Pseudomonas spp. Can J Microbiol 41:126–135

    Article  CAS  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 5:95–200

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Sebat JL, Paszczynski AJ, Cortese MS, Crawford RL (2001) Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol 67:3934–3942

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Visca P, Beyeler M, Chiesa VD, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257

    PubMed  CAS  Google Scholar 

  • Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187:2138–2147

    Article  PubMed  CAS  Google Scholar 

  • Stolworthy JC, Paszczynski A, Korus R, Crawford RL (2001) Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegradation 12:411–418

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64:185–218

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  PubMed  CAS  Google Scholar 

  • Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839

    Article  PubMed  CAS  Google Scholar 

  • Tümmler B, Cornelis P (2005) Pyoverdine receptor: a case of positive Darwinian selection in Pseudomonas aeruginosa. J Bacteriol 187:3289–3292

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Colotti G, Serino L, Versili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893

    PubMed  CAS  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45:1177–1190

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cornelis, P., Matthijs, S. (2007). Pseudomonas Siderophores and their Biological Significance. In: Varma, A., Chincholkar, S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71160-5_9

Download citation

Publish with us

Policies and ethics