Skip to main content

Two earth years of Mössbauer studies of the surface of Mars with MIMOS II

  • Conference paper
  • First Online:
NASSAU 2006

Abstract

The element iron plays a crucial role in the study of the evolution of matter from an interstellar cloud to the formation and evolution of the planets. In the Solar System iron is the most abundant metallic element. It occurs in at least three different oxidation states: Fe(0) (metallic iron), Fe(II) and Fe(III). Fe(IY) and Fe(VI) compounds are well known on Earth, and there is a possibility for their occurrence on Mars. In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Mössbauerspectrometer MIMOS II. They performed for the first time in-situ measurements of the mineralogy of the Martian surface, at two different places on Mars, Meridiani Planum and Gusev crater, respectively, the landing sites of the Mars-Exploration-Rovers (MER) Opportunity and Spirit. After about two Earth years or one Martian year of operation the Mössbauer (MB) spectrometers on both rovers have acquired data from more than 150 targets (and more than thousand MB spectra) at each landing site. The scientific measurement objectives of the Mössbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these ironbearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mössbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels. The Mössbauer spectrometer on Opportunity at Meridiani Planum, identified eight Fe-bearing phases: jarosite (K,Na,H30)(Fe,AI)(OH)6(S04)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and a metallic Fe-Ni alloy (kamacite) in a Fe-Nimeteorite. Outcrop rocks consist ofhematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (28%, 35%, and 19% of total Fe). Jarosite is mineralogical evidence for aqueous processes under acidsulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/IFetotal ∼0.2–0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Basaltic soil at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions. At Gusev crater, the Mossbauer spectrometer on the MER Spirit rover has identified 8 Fe-bearing phases. Two are Fe2+ silicates (olivine and pyroxene), one is a Fe2+ oxide (ilmenite), one is a mixed Fe2+ and Fe3+ oxide (magnetite), two are Fe3+ oxides (hematite and goethite), one is a Fe3+ sulfate (mineralogically not constrained), and one is a Fe3+ alteration product (npOx). The surface material in the plains have a olivine basaltic signature (Morris, et al., Science, 305: 833, 2004; Morris, et al., J. Geophys. Res., 111, 2006, Ming, et al., J. Geophys. Res., 111, 2006) suggesting physical rather than chemical weathering processes present in the plains. The Mossbauer signature for the Columbia Hills surface material is very different ranging from nearly unaltered material to highly altered material. Some of the rocks, in particular a rock named Clovis, contain a significant amount of the Fe oxyhydroxide goethite, α-FeOOH, which is mineralogical evidence for aqueous processes because it is formed only under aqueous conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Rodionov, D., De Souza, P.A. Jr., Squyres, S.W., Foh, J., Kankeleit, E., Bonnes, D., Gellert, R., Schröder, C., Linkin, S., Evlanov, E., Zubkov, B., Prilutski, 0.: J. Geophys. Res. 108, 8067 (2003)

    Article  Google Scholar 

  2. Morris, R.V., Klingelhöfer, G., Bernhardt, B., Schröder, C., Rodionov, D.S., De Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Foh, J., Kankleit, E., Gütlich, P., Ming, D.W., Renz, F, Wdowiak, T., Squyres, S.W., Arvidson, R.E.: Science 305, 833 (2004)

    Article  ADS  Google Scholar 

  3. Klingelhöfer, G., Morris, R.Y., Bernhardt, B., Schröder, C., Rodionov, D.S., De Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, D., Kankleit, E., Gütlich, P., Ming, D.W., Renz, E, Wdowiak, T., Squyres, S.W., Arvidson, R.E.: Science 306, 1740 (2004)

    Article  ADS  Google Scholar 

  4. Klingelhöfer, G.: In: Garcia, M., Marco, J.F, Plazaola, F (eds.) Industrial Applications of the Mössbauer Effect. American Institute of Physics (2005)

    Google Scholar 

  5. Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A. Jr., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, D., Kankeleit, E., Gütlich, P., Renz, E, Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. 111, (2006) E02S12, doi:l0.l029/2005JE002560

    Google Scholar 

  6. Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D.C., Gellert, R., Yen, A., Clark, B.C., Squyres, S.W., Farrand, W.H., Ruff, S.W., Arvidson, R.E., Klingelhöfer, G., McSween, H.Y., Rodionov, D.S., Schröder, C., De Souza, P.A. Jr., Wang, A.: J. Geophys. Res. 111, (2006) E02S12, doi:10.1029/ 2005JE002560

    Google Scholar 

  7. Klingelhöfer, G., Held, P., Teucher, R., Schlichting, F, Foh, J., Kankeleit, E.: Hyperfine Interact. 95, 305–339 (1995)

    Article  ADS  Google Scholar 

  8. Squyres, S.W., et al.: J. Geophys. Res. 108, 8062 (2003) doi:l0.1029/2003JE002121

    Article  Google Scholar 

  9. Klingelhöfer, G., DeGrave, E., Morris, R.V., Van Alboom, A., de Resende, V.A., De Souza, P.A. Jr., Rodionov, D., Schröder, C., Ming, D.W., Yen, A., Hyperfine Interact. (2006) doi:l0.1007/s10751-0069329-y

    Google Scholar 

  10. Cornell, R.M., Schwertmann, D.: The Iron Oxides. VCH Verlagsgesellschaft mbH, Weinheim, Germany (1996)

    Google Scholar 

  11. Clark, B.C., Baird, A.K., Rose, H.I., Toulmin, P. III, Keil, K., Castro, A.I., Kelliher, W.C., Rowe, C.D., Evans, P.H.: Science 194, 1283–1288 (1976)

    Article  ADS  Google Scholar 

  12. Toulmin, P. III, Baird, A.K., Clark, B.C., Keil, K., Rose, H.I. Jr., Christian, R.P., Evans, P.H., Kelliher, W.C.: J. Geophys. Res. 84, 4625–4634 (1977)

    Article  ADS  Google Scholar 

  13. Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween, H. Y. Jr.: Science 278, 1771–1774 (1997)

    Article  ADS  Google Scholar 

  14. Rieder, R., Gellert, R., Brückner, J., Klingelhöfer, G., Dreibus, G., Yen, A., Squyres, S.W.: J. Geophys. Res. 108(E12), 8066 (2003) doi:10.1029/2003JE002150

    Article  Google Scholar 

  15. Gellert, R., Rieder, R., Anderson, R.C., Briickner, J., Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W., Squyres, S.W., d’Uston, C., Wänke, H., Yen, A., Zipfel, J.: Science 305, 829–832 (2004)

    Article  ADS  Google Scholar 

  16. Gellert, R., Rieder, R., Brückner, J., Clark, B.C., Dreibus, G., Klingelhöfer, G., Lugmair, G.W., Ming, D. W., Wänke, H., Yen, A., Zipfel, J., Squyres, S.W.: J. Geophys. Res. 111, (2006) E02S05, doi:l0.1029/ 2005JE002555

    Google Scholar 

  17. Schröder, C., Klingelhöfer, G., Tremel, W.: Planet. Space Sci. 52(11), 997–1010 (2004) doi:l0.016/j. pss.2004.07.018

    Article  ADS  Google Scholar 

  18. Morris, R.Y., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A. Jr., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, D., Kankeleit, E., Gütlich, P., Renz, E, Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. 111, (2006) E02S 13, doi: 10.1029/2005JE002584

    Google Scholar 

  19. Klingelhöfer, G., Fegley, B. Jr., Morris, R.V., Kankeleit, E., Held, P., Evlanov, E., Priloutskii, O.: Planet. Space Sci. 44, 1277–1288 (1996)

    Article  ADS  Google Scholar 

  20. Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, J.F III, Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., Klingelhöfer, G., Knoll, A.H., McLennan, S.M., McSween, H.Y, Morris, R.V., Rice, J.W., Rieder, R., Soderblom, L.A.: Science 306, 1709–1714 (2004)

    Article  ADS  Google Scholar 

  21. Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A. Jr., Wdowiak, T., Fleischer, I., Gellert, R., Bernhardt, B., Bonnes, D., Cohen, B.A., Evlanov, E.N., Foh, J., Gütlich, P., Kankeleit, E., McCoy, T., Mittlefehldt, D.W., Renz, F., Schmidt, M.E., Zubkov, B., Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. 112, (2007) doi:l0.1029/2006JE002791

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Klingelhöfer, G., Morris, R.V., De Souza, P.A., Rodionov, D., Schröder, C. (2007). Two earth years of Mössbauer studies of the surface of Mars with MIMOS II. In: Alp, E.E., Wynter, C.I. (eds) NASSAU 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71127-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71127-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71124-7

  • Online ISBN: 978-3-540-71127-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics