Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1240 Accesses

Abstract

Space-filling curves tool path generation technique presented in Chap. 4 has been designed for surfaces represented in such a way that the parametric coordinates are changing within a rectangular region. Once a minimal machining strip is evaluated, constructing a basic grid for the SFC generation in the rectangular region is trivial (see Sect. 4.3.1). However, such a grid is often inefficient since a small step between the tracks could be required only in certain areas. The rectangular grid is also inefficient in the case of a complex boundary of the so-called trimmed surfaces. These surfaces are characterized by the boundaries created by intersections with other surfaces. The complex boundaries also occur in the case of pocket milling when the parametric region includes internal boundaries around one or several pockets. From the viewpoint of computational mathematics the above are classic situations when a numerically generated adaptive curvilinear grid should be introduced. The grid may be easily converted to the zigzag tool path or replace the basic grid required at the first step of the SFC tool path generation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amazigo, J. C. and Rubenfeld, L. A. 1980. Advanced Calculus and Its Applications to the Engineering and Physical Sciences. John Wiley & Sons, Inc., New York, USA.

    MATH  Google Scholar 

  2. Anderson, D. and Ray, M. 1982. The use of solution adaptive grids in solving partial differential equations. Applied Mathematics and Computation, 10–11:317–338.

    Article  Google Scholar 

  3. Anderson, D. A. 1987. Equidistribution schemes, poisson generators, and adaptive grids. Applied Mathematics and Computation, 24(3):211–227.

    Article  MATH  MathSciNet  Google Scholar 

  4. Arina, R. and Tarditi, S. 1994. Orthogonal block structured surface grids. In Baines, M. J. and Morton, K. W., editors, Numerical Methods for Fluid Dynamics IV, pages 291–298. Oxford University Press.

    Google Scholar 

  5. Babuska, I. and Rheinboldt, W. 1979. A-posteriori error estimates for the finite element method. International Journal for Numerical Methods in Engineering, 12:1597–1615.

    Article  Google Scholar 

  6. Bahvalov, S. 1969. On optimization of methods for solving boundary problems with boundary layers. Computational Mathematics and Mathematical Physics, 9(4):841–859.

    MathSciNet  Google Scholar 

  7. Baker, T. 1989. Developments and trends in three-dimensional mesh generation. Applied Numerical Mathematics, 5(4):275–304.

    Article  MATH  MathSciNet  Google Scholar 

  8. Berger, M. and Oliger, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3):484–512.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bieterman, M. B. and Sandstrom, D. R. 2003. A curvilinear tool-path method for pocket machining. Journal of Materials Processing Technology, 125(4):709–715.

    Google Scholar 

  10. Blacker, T. and R.J., M. 1993. Seams and wedges in plastering: A 3D hexahedral mesh generation algorithm. Engineering with Computers, 2(9):83–93.

    Article  Google Scholar 

  11. Blacker, T. and Stephenson, M. B. 1991. Paving: a new approach to automated quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 32(4):811–847.

    Article  MATH  Google Scholar 

  12. Boender, E. 1994. Reliable Delaunay-based mesh generation and mesh improvement. Communications in Numerical Methods in Engineering, 10(10):773–783.

    Article  MATH  MathSciNet  Google Scholar 

  13. Brackbill, J. U. 1993. An adaptive grid with directional control. Journal of Computational Physics, 108(1):38–50.

    Article  MATH  MathSciNet  Google Scholar 

  14. Brackbill, J. U., B., K. D., and M., R. H. 1988. FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computational Physics Communications, 48(1):25–38.

    Article  Google Scholar 

  15. Brackbill, J. U. and Saltzman, J. S. 1982. Adaptive zoning for singular problems in two dimensions. Journal of Computational Physics, 46(3):342–368.

    Article  MATH  MathSciNet  Google Scholar 

  16. Carey, G. 1997. Computational Grids: Generations, Adaptation & Solution Strategies. Taylor & Francis, London.

    Google Scholar 

  17. Carey, G. and Dinh, H. 1985. Grading function and mesh redistribution. SIAM Journal of Numerical Analysis, 22(3):1028–1040.

    Article  MATH  MathSciNet  Google Scholar 

  18. Charakhch’yan, A. 1994. Compound difference schemes for time-dependent equations on non-uniform meshes. Communications in Numerical Methods in Engineering, 10(2):93–110.

    Article  MATH  MathSciNet  Google Scholar 

  19. Charakhch’yan, A. A. and Ivanenko, S. A. 1997. A variational form of the Winslow grid generator. Journal of Computational Physics, 136(2):385–398.

    Article  MathSciNet  Google Scholar 

  20. Dannenhoffer, J. 1988. A comparison of two adaptive grid techniques. In Numerical Grid Generation in Computational. Fluid Mechanics’ 88, pages 319–328.

    Google Scholar 

  21. Dar’in, N. and Majukin, V. 1988. On one approach to adaptive grid generation in time-dependent problems. Computational Mathematics and Mathematical Physics, 28(3):454–460.

    MathSciNet  Google Scholar 

  22. De Boor, C. 1974. Good approximation by splines with variable knots II. In Watson, G. A., editor, Lecture Notes in Mathematics, volume 363, pages 12–20. Springer-Verlag, Berlin.

    Google Scholar 

  23. Degtyarev, L. and Ivanova, T. 1993. Adaptive grid method in one-dimensional nonstationary convection-diffusion problems. Differential Equations, 29(7):1179–1192.

    MathSciNet  Google Scholar 

  24. Diaz, A., Kikuchi, N., and Taylor, J. 1983. A method of grid optimization for finite element method. Computational Methods in Applied Mechanics and Engineering, 41(1):29–45.

    Article  MATH  MathSciNet  Google Scholar 

  25. Dvinsky, A. 1991. Adaptive grid generation from harmonic maps on riemanian manifolds. Journal of Computational Physics, 95(3):450–476.

    Article  MATH  MathSciNet  Google Scholar 

  26. Eells, J. and Sampson, J. 1964. Harmonic mappings of riemannian manifolds. American Journal of Mathematics, 86(1):109–160.

    Article  MATH  MathSciNet  Google Scholar 

  27. Eiseman, P. 1987. Adaptive grid generation. Computational Methods in Applied Mechanics and Engineering, 64(1–3):321–37664.

    Article  MATH  MathSciNet  Google Scholar 

  28. Emelyanov, K. 1994. Optimal grid generation and its application in singular problems. Computational Mathematics and Mathematical Physics, 34(6):936–943.

    MathSciNet  Google Scholar 

  29. Farrashkhalvat, M. and Miles, J. 2003. Basic Structured Grid Generation: With an Introduction to Unstructured Grid Generation. Elsevier.

    Google Scholar 

  30. Frey, W. and Field, D. 1991. Mesh relaxation: A new technique for improving triangulation. International Journal for Numerical Methods in Engineering, 31(6):1121–1133.

    Article  MATH  MathSciNet  Google Scholar 

  31. George, P. 1991. Automatic Mesh Generation: Application to Finite Element Methods. John Wiley and Sons, New York.

    MATH  Google Scholar 

  32. Godunov, S. and Prokopov, G. 1967. On computing conformal mappings and finite-difference grid generation. Computational Mathematics and Mathematical Physics, 7(5):1031–1059.

    MATH  MathSciNet  Google Scholar 

  33. Godunov, S. and Prokopov, G. 1972. The use of moving meshes in gasdynamics calculations. Computational Mathematics and Mathematical Physics, 12(2):182–194.

    MathSciNet  Google Scholar 

  34. Golias, N. and Tsiboukis, T. 1994. An approach to refining three-dimensional tetrahedral meshes based on Delauney transformations. International Journal for Numerical Methods in Engineering, 37:793–812.

    Article  MATH  MathSciNet  Google Scholar 

  35. Grebennikov, A. 1976. On the choice of nodes in spline approximation. Computational Mathematics and Mathematical Physics, 16(1):219–223.

    MATH  MathSciNet  Google Scholar 

  36. Ivanenko, S. 1995. Adaptive-harmonic grid generation and its application for numerical solution of the problems with boundary and interior layers. Computational Mathematics and Mathematical Physics, 35(10):1203–1220.

    MATH  MathSciNet  Google Scholar 

  37. Ivanenko, S. A. 1988. Generation of non-degenerate meshes. Computational Mathematics and Mathematical Physics, 28(5):141–146.

    MATH  MathSciNet  Google Scholar 

  38. Ivanenko, S. A. 1993. Adaptive grids and grids on surfaces. Computational Mathematics and Mathematical Physics, 33(9):1179–1193.

    MathSciNet  Google Scholar 

  39. Ivanenko, S. A. 1999. Harmonic mappings. In Handbook of Grid Generation, chapter 8, pages 8(1–43). CRC Press, Inc., Boca Raton, FL, USA.

    Google Scholar 

  40. Jaquotte, O.-P. 1988. A mechanical model for a new grid generation method in computational fluid dynamics. Computational Mathematics and Applied Mechanics in Engineering, 66:323–338.

    Article  Google Scholar 

  41. Jeong, J. and Kim, K. 1999. Generation of tool paths for machining freeform pockets with islands using distance maps. International Journal of Advanced Manufacturing Technology, 15(5):311–316.

    Article  Google Scholar 

  42. J.F., T., Soni, B., and Weatherill, N. 1999. Handbook of grid generation. CRC Press.

    Google Scholar 

  43. Jiang, B. and Carey, G. 1987. Adaptive refinement for least squares finite elements with element-by-element conjugate gradient solution. International Journal for Numerical Methods in Engineering, 24(3):569–580.

    Article  MATH  MathSciNet  Google Scholar 

  44. Kennon, S. and Anderson, D. 1988. Unstructured grid adaption for nonconvex domains. In Proceedings of the Conference on Numerical Grid Generation in Computational Fluid Mechanics, pages 599–609.

    Google Scholar 

  45. Kennon, S. and Dulikravich, G. 1986. Generation of computational grids using optimization. AIAA Journal, 24(7):1069–1073.

    MATH  Google Scholar 

  46. Liseikin, V. 2006. A Computational Differential Geometry Approach to Grid Generation. Springer, Berlin, New York.

    Google Scholar 

  47. Liseikin, V. D. 1999. Grid Generation Methods. Springer-Verlag, Berlin, Germany.

    MATH  Google Scholar 

  48. Lo, C. C. 1999. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter. Computer-Aided Design, 31(9):557–566.

    Article  MATH  Google Scholar 

  49. Makhanov, S. S. 1999. An application of variational grid generation techniques to the tool-path optimization of industrial milling robots. Journal of Materials Processing Technology, 39(9):1524–1535.

    MATH  Google Scholar 

  50. Makhanov, S. S., Batanov, D., Bohez, E., Sonthipaumpoon, K., Anotaipaiboon, W., and Tabucanon, M. 2002. On the tool-path optimization of a milling robot. Computers & Industrial Engineering, 43(3):455–472.

    Article  Google Scholar 

  51. Makhanov, S. S. and Ivanenko, S. A. 2003. Grid generation as applied to optimize cutting operations of the five-axis milling machine. Applied Numerical Mathematics, 46(3–4):331–351.

    Article  MATH  Google Scholar 

  52. Muller, K. 1981. Moving finite elements II. SIAM Journal of Numerical Analysis, 18(6):1033–1057.

    Article  Google Scholar 

  53. Muller, K. and Muller, R. 1981. Moving finite elements I. SIAM Journal of Numerical Analysis, 18(6):1019–1032.

    Article  Google Scholar 

  54. Nakahashi, K. and Deiwert, G. S. 1986. Three-dimensional adaptive grid method. AIAA Journal, 24(6):948–045.

    Google Scholar 

  55. Oden, J., Demkowicz, L., Strouboulis, T., and Devlow, P. 1986. Adaptive methods for problems in solid and fluid mechanics. In Babuska, I., editor, Accuracy Estimates and Adaptive Refinements in Finite Element Computations, pages 249–280. John Willey.

    Google Scholar 

  56. Pardhanani, A. and Carey, G. 1988. Optimization of computational grids. Numerical Methods for Partial Differential Equations, 4(2):95–117.

    Article  MATH  MathSciNet  Google Scholar 

  57. P.D., T. 1982. Composite three dimensional grids generated by elliptic systems. AIAA Journal, 20(9):1195–1202.

    Google Scholar 

  58. Pereira, V. and Sewell, E. 1975. Mesh selection for discrete solutions of boundary value problems in ordinary differential equations. Numerical Mathematics, 23(3):261–268.

    Article  Google Scholar 

  59. Prokopov, G. 1970. Construction of orthogonal difference grids from conformal mappings. In Proceedings N45, Keldysh Institute of Applied Mathematics, Moscow (in Russian).

    Google Scholar 

  60. Rank, E. and Babushka, I. 1987. An expert system for the optimal mesh design in hp-version of the finite element method. International Journal for Numerical Methods in Engineering, 24(11):2087–2106.

    Article  MATH  MathSciNet  Google Scholar 

  61. Roache, P. and Steinberg, S. 1985. A new approach to grid generation using a variational formulation. In Proceeding of AIAA 7-th Computational Fluid Dynamics Conference, pages 360–370.

    Google Scholar 

  62. Russel, R.D. and Christiansen, J. 1978. Adaptive mesh selection strategies for solving boundary value problems. SIAM Journal of Numerical Analysis, 15(1):59–80.

    Article  Google Scholar 

  63. Ryskin, G. and L.G., L. 1983. Orthogonal mapping. Journal of Computational Physics, 50(1):71–100.

    Article  MATH  MathSciNet  Google Scholar 

  64. Saltzman, J. 1986. Variational methods for generating meshes on surfaces. Journal of Computational Physics, 63(1):1–19.

    Article  MATH  MathSciNet  Google Scholar 

  65. Samareh-Abolhassani, J. and Stewart, J. 1994. Surface grid generation in a parameter space. Journal of Computational Physics, 113(1):112–121.

    Article  MATH  Google Scholar 

  66. Serezhnikova, T., Sidorov, A., and Ushakova, O. 1989. On one method of construction of optimal curvilinear grids and its applications. Soviet Journal Numerical Analysis and Mathematical Modelling, 4(2):137–155.

    Article  MATH  MathSciNet  Google Scholar 

  67. Sidorov, A. 1966. On one algorithm for computing optimal difference grids. In Proceedings of the Steklov Institute of Mathematics, pages 147–151.

    Google Scholar 

  68. Soni, B. 1993. Elliptic grid generation system: Control functions revisited-I. Applied Mathematics and Computation, 59:151–163.

    Article  MATH  MathSciNet  Google Scholar 

  69. Spitaleri, R. and Micacchi, V. 1998. A multiblock multigrid generation method for complex simulations. Mathematics and Computers in Simulation, 46(1):1–12.

    Article  Google Scholar 

  70. Steger, J. and Chaussee, D. 1980. Generation of body-fitted coordinates using hyperbolic partial differential equations. SIAM Journal on Scientific and Statistical Computing, 1(4):431–437.

    Article  MATH  MathSciNet  Google Scholar 

  71. Steinberg, S. 1994. Fundamentals of Grid Generation. CRC Press.

    Google Scholar 

  72. Thompson, J. 1984. Grid generation techniques in computational fluid dynamics. AIAA Journal, 22(11):1505–1523.

    MATH  Google Scholar 

  73. Thompson, J., Warsi, Z., and Mastin, C. 1985. Numerical grid generation: Foundations and Applications. North-Holland.

    Google Scholar 

  74. Thompson, J. F., editor 1982. Numerical Grid Generation. North-Holland.

    Google Scholar 

  75. Tikhonov, A. and Gorbunov, A. 1969. Error estimates for the Runge-Kutta methods and choice of optimal grids. Computational Mathematics and Mathematical Physics, 4(2):232–242.

    Google Scholar 

  76. Tu, Y. and Thompson, J. 1991. Three-dimensional solution-adaptive grid generation on composite configurations. AIAA Journal, 29(12):2025–2026.

    Article  MATH  Google Scholar 

  77. Tucker, A. B., editor 1997. The Computer Science and Engineering Handbook. CRC Press.

    Google Scholar 

  78. Vabistchevitch, P. 1989. Adaptive block grids in problems of mathematical. Computational Mathematics and Mathematical Physics, 29(6):902–914.

    MathSciNet  Google Scholar 

  79. White, A. J. 1979. On selection of equidistributing meshes for two-point boundary-value problems. SIAM Journal of Numerical Analysis, 16(3):472–502.

    Article  MATH  Google Scholar 

  80. White, A. J. 1982. On the numerical solution of initial/boundary value problems in one space dimension. SIAM Journal of Numerical Analysis, 19(4):683–697.

    Article  MATH  Google Scholar 

  81. Winslow, A. M. 1966. Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. Journal of Computational Physics, 1(2):149–172.

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Tool Paths in Adaptive Curvilinear Coordinates. In: Advanced Numerical Methods to Optimize Cutting Operations of Five-Axis Milling Machines. Springer Series in Advanced Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71121-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71121-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71120-9

  • Online ISBN: 978-3-540-71121-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics