LASER 2006 pp 109-116 | Cite as

Development of a RILIS ionisation scheme for gold at ISOLDE, CERN

  • B. A. Marsh
  • V. N. Fedosseev
  • P. Kosuri
  • ISOLDE Collaboration
Conference paper


At the ISOLDE on-line isotope separation facility, the resonance ionisation laser ion source (RILIS) can be used to ionise reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionisation of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. With the addition of a new three-step ionisation scheme for gold, the RILIS is now capable of ionising 26 of the elements. The optimal scheme was determined during an extensive study of the atomic energy levels and auto-ionising states of gold, carried out by means of in-source resonance ionisation spectroscopy. Details of the ionisation scheme and a summary of the spectroscopy study are presented.

Key words

radioactive ion beams resonance ionisation laser ion source Au 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mishin, V.I., Fedoseyev, V.N., Kluge, H.-J., Letokhov, V.S., Ravn, H.L., Scheerer, F., Shirakabe, Y., Sundell, S., Tengblad, O., ISOLDE Collaboration: Nucl. Instrum. Methods Phys. Res., B 73, 550 (1993)CrossRefADSGoogle Scholar
  2. 2.
    Fedoseyev, V.N., Huber, G., Köster, U., Lettry, J., Mishin, V.I., Ravn, H.L., Sebastian, V., ISOLDE Collaboration: Hyperfine Interact. 127, 409 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Saloman, E.B.: Spectrochim. Acta, Part B 45, 37 (1990)CrossRefADSGoogle Scholar
  4. 4.
    Krönert, U., Beckert, St., Hilberath, Th., Kluge, H.-J., Schulz, C.: Appl. Phys., A 44, 339 (1987)CrossRefADSGoogle Scholar
  5. 5.
    Krönert, U., Beckert, St., Bollen, G., Gerber, M., Hilberath, Th., Kluge, H.-J., Passler, G., ISOLDE Collaboration: Nucl. Instrum. Methods Phys. Res., A 300, 522 (1991)CrossRefADSGoogle Scholar
  6. 6.
    Bekov, G.I., Tursunov, A.T., Khasanov, G., Eshkobilov, N.B.: Opt. Spectrosc. (USSR) 62, 163 (1987)ADSGoogle Scholar
  7. 7.
    Zhao, W.Z., Xu, X.Y., Ma, W.Y., Cheng, Y., Hui, Q., Wen, K.L., Chen, D.Y.: Appl. Phys., B 52, 299 (1991)CrossRefADSGoogle Scholar
  8. 8.
    Fedosseev, V.N., Fedorov, D.V., Horn, R., Huber, G., Köster, U., Lassen, J., Mishin, V.I., Seliverstov, M.D., Weissman, L., Wendt, K., ISOLDE Collaboration: Nucl. Instrum. Methods Phys. Res., B 204, 353 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Catherall, R., Fedosseev, V.N., Köster, U., Lettry, J., Suberlucq, G., Marsh, B.A., Tengborn, E., ISOLDE Collaboration: Rev. Sci. Instrum. 75, 1614 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Loock, H.-P., Beaty, L.M., Simard, B.: Phys. Rev. A 59, 873 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • B. A. Marsh
    • 1
    • 3
  • V. N. Fedosseev
    • 1
  • P. Kosuri
    • 2
  • ISOLDE Collaboration
  1. 1.CERNGeneva-23Switzerland
  2. 2.KTHStockholmSweden
  3. 3.The University of ManchesterManchesterUK

Personalised recommendations