Skip to main content

Multiscale Fractal Analysis of Cortical Pyramidal Neurons

  • Conference paper
Bildverarbeitung für die Medizin 2007

Part of the book series: Informatik aktuell ((INFORMAT))

  • 905 Accesses

Abstract

The present study used 3D data on neuronal morphology images to quantitatively characterize the phenotype of transgenic neurons. We calculated the multiscale fractal dimension (MFD) of reconstructed neuronal cells. It was shown that in a specific mouse mutant changes in the complexity of neuronal morphology correlate with changes in the MFD of dendrites of pyramidal neurons. Neurons in the mutant strain have lower peak fractal dimension compared with the wildtype, and a greater variety of the cell morphological phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heumann R, Goemans C, Bartsch D, et al. Constitutive activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J Cell Biol 2000;151:1537–1548.

    Article  Google Scholar 

  2. Alpár A, Palm K, Schierwagen A, et al. Expression of constitutively active p21H-rasVal12 in postmitotic pyramidal neurons results in increased dendritic size and complexity. J Comp Neurol 2003;467:119–133.

    Article  Google Scholar 

  3. Schierwagen A. Dendritic branching patterns. In: Degn H et al. Chaos in Biological Systems. Plenum, New York; 1987. 191–193.

    Google Scholar 

  4. Fernandez E, Jelinek HF. Use of fractal theory in neuroscience: Methods, advantages, and potential problems. Methods 2001;24:309–321.

    Article  Google Scholar 

  5. Costa LF, Manoel ETM, Faucereau F, et al. A shape analysis framework for neuromorphometry. Comput Neural Syst 2002;13:283–310.

    Article  Google Scholar 

  6. Cannon RC. Structure editing and conversion with cvapp; 2000. Available from: http://www.compneuro.org/CDROM/nmorph/usage.html

    Google Scholar 

  7. Costa LF, Jr RCesar. Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton; 2001.

    Google Scholar 

  8. Costa LF, Barbosa MS, Schierwagen A, et al. Active percolation analysis of pyramidal neurons of somatosensory cortex: A comparison of wildtype and p21H-rasVal12 transgenic mice. Int J Mod Phys C 2005;16:655–667.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schierwagen, A., Costa, L.d.F., Alpár, A., Gärtner, U. (2007). Multiscale Fractal Analysis of Cortical Pyramidal Neurons. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71091-2_85

Download citation

Publish with us

Policies and ethics