Advertisement

Visual Analytics: Scope and Challenges

  • Daniel A. Keim
  • Florian Mansmann
  • Jörn Schneidewind
  • Jim Thomas
  • Hartmut Ziegler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)

Abstract

In today’s applications data is produced at unprecedented rates. While the capacity to collect and store new data rapidly grows, the ability to analyze these data volumes increases at much lower rates. This gap leads to new challenges in the analysis process, since analysts, decision makers, engineers, or emergency response teams depend on information hidden in the data. The emerging field of visual analytics focuses on handling these massive, heterogenous, and dynamic volumes of information by integrating human judgement by means of visual representations and interaction techniques in the analysis process. Furthermore, it is the combination of related research areas including visualization, data mining, and statistics that turns visual analytics into a promising field of research. This paper aims at providing an overview of visual analytics, its scope and concepts, addresses the most important research challenges and presents use cases from a wide variety of application scenarios.

Keywords

Sulfur Mustard Information Visualization Geospatial Analytic Application Challenge Emergency Response Team 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, J., Cook, K.: Illuminating the Path: Research and Development Agenda for Visual Analytics. IEEE Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Ware, C.: Information Visualization - Perception for Design, 1st edn. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  3. 3.
    Tuckey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)Google Scholar
  4. 4.
    Thomas, J.J., Cook, K.A.: A Visual Analytics Agenda. IEEE Transactions on Computer Graphics and Applications 26(1), 12–19 (2006)Google Scholar
  5. 5.
    Wong, P.C., Thomas, J.: Visual analytics. IEEE Computer Graphics and Applications 24(5), 20–21 (2004)CrossRefGoogle Scholar
  6. 6.
    van Wijk, J.J.: The value of visualization. IEEE Visualization, 79–86 (2005)Google Scholar
  7. 7.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
  8. 8.
    Keim, D.A., Kohlhammer, J., Thomas, J.: Workshop on visual analytics (2005), http://infovis.uni-konstanz.de/events/ws_visual_analytics_05/
  9. 9.
    Ma, K.-L., Lum, E., Yu, H., Akiba, H., Huang, M.-Y., Wang, Y., Schussman, G.: Scientific discovery through advanced visualization. In: Proceedings of DOE SciDAC 2005 Conference, San Francisco (June 2005)Google Scholar
  10. 10.
    Sloan Digital Sky Survey (2007), http://www.sdss.org/
  11. 11.
    COMPLETE - the COordinated Molecular Probe Line Extinction Thermal Emission survey of star forming regions. (2007), http://cfa-www.harvard.edu/COMPLETE/index.html
  12. 12.
    Keim, D.A., Nietzschmann, T., Schelwies, N., Schneidewind, J., Schreck, T., Ziegler, H.: FinDEx: A spectral visualization system for analyzing financial time series data. In: EuroVis 2006: Eurographics/IEEE-VGTC Symposium on Visualization, Lisbon, Portugal, May 8-10 (2006)Google Scholar
  13. 13.
    Wattenberg, M.: Visualizing the stock market. In: CHI 1999: CHI 1999 extended abstracts on Human factors in computing systems, pp. 188–189. ACM Press, New York (1999)CrossRefGoogle Scholar
  14. 14.
    Livnat, Y., Agutter, J., Moon, S., Foresti, S.: Visual correlation for situational awareness. In: IEEE Symposium on Information Visualization, pp. 95–102 (2005)Google Scholar
  15. 15.
    Teoh, S.T., Jankun-Kelly, T., Ma, K.-L., Wu, S.F.: Visual data analysis for detecting flaws and intruders in computer network systems. IEEE Transactions on Computer Graphics and Applications, September/October 2004, 27–35 (2004)Google Scholar
  16. 16.
    Goodall, J.R., Lutters, W.G., Rheingans, P., Komlodi, A.: Preserving the big picture: Visual network traffic analysis with TNV. In: Proceedings of IEEE Workshop on Visualization for Computer Security, pp. 47–54 (2005)Google Scholar
  17. 17.
    Voinea, S., Chaudron, A.T.M.: Version-centric visualization of code evolution. In: Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization (2005)Google Scholar
  18. 18.
    Balzer, M., Deussen, O.: Voronoi treemaps. In: IEEE Symposium on Information Visualization (InfoVis 2005), pp. 7–14 (2005)Google Scholar
  19. 19.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal on Molecular Biology 215(3), 403–410 (1990)Google Scholar
  20. 20.
    Tatusova, T., Madden, T.: Blast2 sequences - a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letter 174(2), 247–250 (1999)CrossRefGoogle Scholar
  21. 21.
    Doleisch, H., Mayer, M., Gasser, M., Wanker, R., Hauser, H.: Case study: Visual analysis of complex, time-dependent simulation results of a diesel exhaust system. In: 6th Joint IEEE TCVG -EUROGRAPHICS Symposium on Visualization (VisSym 2004), May 2004, pp. 91–96 (2004)Google Scholar
  22. 22.
    IBM Remail - reinventing email (2005), http://www.research.ibm.com/remail/
  23. 23.
    MIT Project Oxygen (2007), http://oxygen.lcs.mit.edu/
  24. 24.
    Pantheon Highway Gateway (2007), http://highway.lac.uic.edu/
  25. 25.
    Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, p. 316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Chen, C.: Top 10 unsolved information visualization problems. IEEE Transactions on Computer Graphics and Applications 25(4), 12–19 (2005)CrossRefGoogle Scholar
  27. 27.
    Eick, S.G., Karr, A.F.: Visual scalability. Journal of Computational & Graphical Statistics, 22–43 (March 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel A. Keim
    • 1
    • 2
  • Florian Mansmann
    • 1
    • 2
  • Jörn Schneidewind
    • 1
    • 2
  • Jim Thomas
    • 1
    • 2
  • Hartmut Ziegler
    • 1
    • 2
  1. 1.University of Konstanz 
  2. 2.Pacific Northwest National LaboratoryNational Visualization and Analytics Center (NVAC) Email:nvac@pnl.gov, http://nvac.pnl.gov 

Personalised recommendations