The 3DVDM Approach: A Case Study with Clickstream Data

  • Michael H. Böhlen
  • Linas Bukauskas
  • Arturas Mazeika
  • Peer Mylov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)


Clickstreams are among the most popular data sources because Web servers automatically record each action and the Web log entries promise to add up to a comprehensive description of behaviors of users. Clickstreams, however, are large and raise a number of unique challenges with respect to visual data mining. At the technical level the huge amount of data requires scalable solutions and limits the presentation to summary and model data. Equally challenging is the interpretation of the data at the conceptual level. Many analysis tools are able to produce different types of statistical charts. However, the step from statistical charts to comprehensive information about customer behavior is still largely unresolved. We propose a density surface based analysis of 3D data that uses state-of-the-art interaction techniques to explore the data at various granularities.


Probability Density Function Density Surface Density Level Visible Object Data Warehouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Mehta, M., Shafer, J.C., Srikant, R., Arning, A., Bollinger, T.: The quest data mining system. In: Proceedings of ACM SIGKDD, 2-4, 1996, pp. 244–249. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    Brunk, C., Kelly, J., Kohavi, R.: MineSet: an integrated system for data mining. In: Proceedings of SIGKDD, pp. 135–138. AAAI Press, Menlo Park (1997)Google Scholar
  3. 3.
    Cerrito, P.B.: Introduction to Data Mining Using SAS Enterprise Miner. SAS Publishing (2006)Google Scholar
  4. 4.
    Davidson, I., Ward, M.: A Particle Visualization Framework for Clustering and Anomaly Detection. In: Proceedings of Workshop on Visual Data Mining in conjunction with SIGKDD (2001)Google Scholar
  5. 5.
    van den Eijkel, G.C., van der Lubbe, J.C.A., Backer, E.: A Modulated Parzen-Windows Approach for Probability Density Estimation. In: IDA (1997)Google Scholar
  6. 6.
    Farmen, M., Marron, J.S.: An Assesment of Finite Sample Performace of Adaptive Methods in Density Estimation. In: Computational Statistics and Data Analysis (1998)Google Scholar
  7. 7.
    Gross, M.H., Sprenger, T.C., Finger, J.: Visualizing information on a sphere. Visualization (1997)Google Scholar
  8. 8.
    Guha, S., Rastogi, R., Shim, K.: CURE: an Efficient Clustering Algorithm for Large Databases. In: Proceedings of SIGMOD, pp. 73–84 (1998)Google Scholar
  9. 9.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proceedings of SIGMOD, pp. 47–57. ACM Press, New York (1984)Google Scholar
  10. 10.
    Hinneburg, A., Keim, D.A.: Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. The VLDB Journal, 506–517 (1999)Google Scholar
  11. 11.
    Clementine SPSS Inc. Data mining system: Clementine 12.0 (2008)Google Scholar
  12. 12.
    Keahey, T.A.: Visualization of High-Dimensional Clusters Using Nonlinear Magnification. In: Proceedings of SPIE Visual Data Exploration and Analysis (1999)Google Scholar
  13. 13.
    Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons, Inc., Chichester (1996)Google Scholar
  14. 14.
    Kimball, R., Merz, R.: The Data Webhouse Toolkit—Building the Web-Enabled Data Warehouse. Wiley Computer Publishing, Chichester (2000)Google Scholar
  15. 15.
    Mazeika, A., Böhlen, M., Mylov, P.: Density Surfaces for Immersive Explorative Data Analyses. In: Proceedings of Workshop on Visual Data Mining in conjunction with SIGKDD (2001)Google Scholar
  16. 16.
    Nagel, H.R., Granum, E., Musaeus, P.: Methods for Visual Mining of Data in Virtual Reality. In: Proceedings of the International Workshop on Visual Data Mining, in conjunction with ECML/PKDD 2001 (2001)Google Scholar
  17. 17.
    Robinson, J.T.: The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indexes. In: Edmund Lien, Y. (ed.) Proceedings of SIGMOD, pp. 10–18. ACM Press, New York (1981)Google Scholar
  18. 18.
    Scott, D.W.: Multivariate Density Estimation. Wiley & Sons, New York (1992)zbMATHGoogle Scholar
  19. 19.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986)zbMATHGoogle Scholar
  20. 20.
    Swayne, D.F., Lang, D.T., Buja, A., Cook, D.: Ggobi: Evolving from Xgobi into an Extensible Framework for Interactive Data Visualization. Comput. Stat. Data Anal. 43(4), 423–444 (2003)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Sprenger, T.C., Brunella, R., Gross, M.H.: H-BLOB: a Hierarchical Visual Clustering Method using Implicit Surfaces. Visualization (2000)Google Scholar
  22. 22.
    Wang, W., Yang, J., Muntz, R.R.: STING: A Statistical Information Grid Approach to Spatial Data Mining. The VLDB Journal, 186–195 (1997)Google Scholar
  23. 23.
    Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1985)Google Scholar
  24. 24.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an Efficient Data Clustering Method for Very Large Databases. In: Proceedings of SIGMOD, pp. 103–114 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael H. Böhlen
    • 1
  • Linas Bukauskas
    • 2
  • Arturas Mazeika
    • 1
  • Peer Mylov
    • 3
  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBozenItaly
  2. 2.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  3. 3.Institute of CommunicationAalborg UniversityAalborg ÃstDenmark

Personalised recommendations