Mining Patterns for Visual Interpretation in a Multiple-Views Environment

  • José F. RodriguesJr.
  • Agma J. M. Traina
  • Caetano TrainaJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)


This chapter introduces a novel systematization aiming at extending the application range of Information Visualization and Visual Data Mining. We present an innovative framework named Visualization Tree in order to integrate multiple data visualizations assisted by novel visual exploration techniques. These exploration techniques are named Frequency Plot, Relevance Plot and Representative Plot, and are integrated according the proposed Visualization Tree framework. The systematization of visualization techniques enabled by these concepts defines a Visual Data Mining environment where multiple presentation workspaces are kept together, linked according to analytical decisions taken by the user. Our emphasis is on developing an intuitive and versatile multiple-views system that helps the user to identify visual patterns while interpreting multiple data subsets. In this context, the analyst is able to draw and summarize several subsets that are inspected simultaneously each in a dedicated workspace.


Mining Pattern Visualization Technique Relevance Point Exploration Technique Frequency Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlberg, C., Shneiderman, B.: Visual information seeking: Tight coupling of dynamic query filters with starfield displays. In: Human Factors in Computing Systems. Conference Proceedings, pp. 313–317 (1994)Google Scholar
  2. 2.
    Ahlberg, C., Shneiderman, B.: Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: CHI 1994: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 313–317. ACM Press, New York (1994)Google Scholar
  3. 3.
    Artero, A.O., de Oliveira, M.C.F., Levkowitz, H.: Uncovering clusters in crowded parallel coordinates visualizations. In: IEEE Symposium on Information Visualization, pp. 81–88 (2005)Google Scholar
  4. 4.
    Bennett, K.P., Mangasarian, O.L.: Robust linear programming discrimination of two linearly inseparable sets. In: OptimizationMethods and Software, pp. 23–34. Gordon & Breach Science Publishers (1994)Google Scholar
  5. 5.
    Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic lenses: The see-through interface. In: Computer Graphics. Annual Conference Series, vol. 27, pp. 73–80 (1993)Google Scholar
  6. 6.
    Boukhelifa, N., Rodgers, P.J.: A model and software system for coordinated and multiple views in exploratory visualization. Information Visualization 2(4), 258–269 (2003)CrossRefGoogle Scholar
  7. 7.
    Faloutsos, C., Lin, K.: Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: ACM Int’l Conference on Data Management (SIGMOD), Zurich, Switzerland, pp. 163–174. Morgan Kaufmann, San Francisco (1995)CrossRefGoogle Scholar
  8. 8.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining: Towards a unifying framework. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA, pp. 82–88. AAAI Press, Menlo Park (1996)Google Scholar
  9. 9.
    Fekete, J.-D., Plaisant, C.: Interactive information visualization of a million items. In: INFOVIS, p. 117 (2002)Google Scholar
  10. 10.
    Fua, Y.-H., Ward, M.O., Rundensteiner, A.: Hierarchical parallel coordinates for visualizing large multivariate data sets. In: IEEE Symposium on Information Visualization, pp. 43–50 (1999)Google Scholar
  11. 11.
    Grinstein, G.G., Ward, M.O.: Introduction to data visualization. In: Fayyad, U., Grinstein, G.G., Wierse, A. (eds.) Information Visualization in Data Mining and Knowledge Discovery, pp. 21–45. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  12. 12.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multidimensional geometry. In: IEEE Visualization, vol. 1, pp. 361–370. IEEE Computer Press, Los Alamitos (1990)Google Scholar
  13. 13.
    Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 107–116. ACM Press, New York (2001)CrossRefGoogle Scholar
  14. 14.
    Keim, D.A., Kriegel, H.-P.: Visdb: Database exploration using multidimensional visualization. IEEE Computer Graphics and Applications 14(5), 40–49 (1994)CrossRefGoogle Scholar
  15. 15.
    Keim, D.A., Kriegel, H.-P.: Visualization techniques for mining large databases: A comparison. IEEE Transactions in Knowledge and Data Engineering 8(6), 923–938 (1996)CrossRefGoogle Scholar
  16. 16.
    Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in visual data analysis. In: 10th Intl Conference on Information Visualisation (IV 2006), London, England, pp. 9–16. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  17. 17.
    Keim, D.A., Schneidewind, J.: Scalable visual data exploration of large data sets via multiresolution. Journal of Universal Computer Science 11(11), 1766–1779 (2005)Google Scholar
  18. 18.
    Rao, R., Card, S.K.: The table lens: Merging graphical and symbolic representation in an interactive focus+context visualization for tabular information. In: Proc. Human Factors in Computing Systems, pp. 318–322 (1994)Google Scholar
  19. 19.
    Rundensteiner, E.A., Ward, M.O., Yang, J., Doshi, P.R.: Xmdvtool: visual interactive data exploration and trend discovery of high-dimensional data sets. In: SIGMOD Conference, p. 631 (2002)Google Scholar
  20. 20.
    Seo, J., Shneiderman, B.: Knowledge discovery in high-dimensional data: Case studies and a user survey for the rank-by-feature framework. IEEE Transactions on Visualization and Computer Graphics 12(3), 311–322 (2006)CrossRefGoogle Scholar
  21. 21.
    Ward, M.O.: Xmdvtool: integrating multiple methods for visualizing multivariate data. In: VIS 1994: Proceedings of the conference on Visualization 1994, pp. 326–333. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  22. 22.
    Wong, P.C., Bergeron, R.D.: Multiresolution multidimensional wavelet brushing. In: VIS 1996: Proceedings of the 7th conference on Visualization 1996, p. 141. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • José F. RodriguesJr.
    • 1
  • Agma J. M. Traina
    • 1
  • Caetano TrainaJr.
    • 1
  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil

Personalised recommendations