Skip to main content

A Type of Partial Recursive Functions

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5170))

Included in the following conference series:

Abstract

Our goal is to define a type of partial recursive functions in constructive type theory. In a series of previous articles, we studied two different formulations of partial functions and general recursion. We could obtain a type only by extending the theory with either an impredicative universe or with coinductive definitions. Here we present a new type constructor that eludes such entities of dubious constructive credentials. We start by showing how to break down a recursive function definition into three components: the first component generates the arguments of the recursive calls, the second evaluates them, and the last computes the output from the results of the recursive calls. We use this dissection as the basis for the introduction rule of the new type constructor. Every partial recursive function is associated with an inductive domain predicate; evaluation of the function requires a proof that the input values satisfy the predicate. We give a constructive justification for the new construct by interpreting it into the base type theory. This shows that the extended theory is consistent and constructive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audebaud, P.: Partial objects in the calculus of constructions. In: Kahn, G. (ed.) Proceedings of the Sixth Annual IEEE Symp. on Logic in Computer Science, LICS 1991, July 1991, pp. 86–95. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  2. Bove, A.: General recursion in type theory. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 39–58. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bove, A., Capretta, V.: Nested general recursion and partiality in type theory. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 121–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Bove, A., Capretta, V.: Modelling general recursion in type theory. Mathematical Structures in Computer Science 15(4), 671–708 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bove, A., Capretta, V.: Recursive functions with higher order domains. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 116–130. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bove, A., Capretta, V.: Computation by prophecy. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 70–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Capretta, V.: Recursive families of inductive types. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 73–89. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Capretta, V.: General recursion via coinductive types. Logical Methods in Computer Science 1(2), 1–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. In: Proceedings of the Workshop on Coalgebraic Methods in Computer Science (CMCS 2004). Electronic Notes in Theoretical Computer Science, vol. 106, pp. 43–61 (2004)

    Google Scholar 

  11. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Information and Computation 204(4), 437–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constable, R.L.: Constructive mathematics as a programming logic I: Some principles of theory. Annals of Mathematics, vol. 24. Elsevier Science Publishers, North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  13. Constable, R.L., Mendler, N.P.: Recursive definitions in type theory. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 61–78. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  14. Constable, R.L., Smith, S.F.: Partial objects in constructive type theory. In: Logic in Computer Science, Ithaca, New York, pp. 183–193. IEEE, Los Alamitos (1987)

    Google Scholar 

  15. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gödel, K.: Über formal unentscheidbare sätze der Principia Mathematica und verwandter systeme. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, S.P.: Haskell 98 Language and Libraries: The Revised Report, April 2003. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, 1984. Notes by Giovanni Sambin of a series of lectures given in Padua (June 1980)

    Google Scholar 

  19. Megacz, A.: A coinductive monad for Prop-bounded recursion. In: Stump, A., Xi, H. (eds.) PLPV 2007: Proceedings of the 2007 workshop on Programming languages meets program verification, pp. 11–20. ACM Press, New York (2007)

    Chapter  Google Scholar 

  20. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas, lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 124–144. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  21. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type Theory. An Introduction. International Series of Monographs on Computer Scence, vol. 7. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  22. Setzer, A.: Partial recursive functions in Martin-Löf Type Theory. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, p. 505. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Setzer, A.: A data type of partial recursive functions in Martin-Löf Type Theory, http://www.cs.swan.ac.uk/~csetzer/articles/setzerDataTypeParRecPostProceedings.ps

  24. The Coq Development Team. LogiCal Project. The Coq Proof Assistant. Reference Manual. Version 8. INRIA (2004), http://pauillac.inria.fr/coq/coq-eng.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bove, A., Capretta, V. (2008). A Type of Partial Recursive Functions. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2008. Lecture Notes in Computer Science, vol 5170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71067-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71067-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71065-3

  • Online ISBN: 978-3-540-71067-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics