Advertisement

Assimilation of Satellite Data in Improving Numerical Simulation of Tropical Cyclones: Progress, Challenge and Development

  • Zhaoxia Pu
Chapter

Abstract

Tropical cyclones originate over the ocean where conventional data are very sparse. Satellites provide a very useful source of data for studying tropical cyclones. This paper gives a brief review on the recent progress in satellite data assimilation for improving the numerical simulations and forecasts of tropical cyclones. The general problems and challenges in tropical cyclone forecasting and satellite data assimilation and potential improvements in the future are also addressed in light of the most recent research.

Keywords

Tropical Cyclone Geophysical Fluid Dynamics Laboratory Track Forecast Tropical Cyclone Intensity Intensity Forecast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberson SD (2002) Two years of operational hurricane synoptic surveillance. Wea Forecast 17:1101–1110CrossRefGoogle Scholar
  2. Aberson SD, Sampson CR (2003) On the predictability of tropical cyclone tracks in the Northwest Pacific Basin. Mon Wea Rev 131:1491–1497CrossRefGoogle Scholar
  3. Aberson SD, Etherton BJ (2006) Targeting and data assimilation studies during Hurricane Humberto (2001). J Atmos Sci 63:175–186CrossRefGoogle Scholar
  4. Bender MA, Ross RJ, Tuleya RE, Kurihara Y (1993) Improvements in tropic cyclone track and intensity forecasts using the GFDL initialization system. Mon Wea Rev 121:2046–2061CrossRefGoogle Scholar
  5. Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteor Atmos Phys 50:233–240CrossRefGoogle Scholar
  6. Black ML, Gamache JF, Marks FD, Samsury CE, Willoughby HE (2002) Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon Wea Rev 130:2291–2312CrossRefGoogle Scholar
  7. Braun SA, Montgomery MT, Pu Z (2006) High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J Atmos Sci 63: 19–42CrossRefGoogle Scholar
  8. Burpee RW, Aberson SD, Franklin JL, Lord SJ, Tuleya RE (1996) The impact of omega dropwindsondes on operational hurricane track forecast models. Bull Amer Meteor Soc 77:925–933CrossRefGoogle Scholar
  9. Cecil DJ, Zipser EJ (1999) Relationship between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice scattering signature and lightning. Mon Wea Rev 127: 103–123CrossRefGoogle Scholar
  10. Chen SH (2007) The Impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Mon Wea Rev 135:549–566CrossRefGoogle Scholar
  11. Derber, JC, Wu WS (1998) The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Wea Rev 126:2287–2299Google Scholar
  12. Elsberry RL, Marks FD (1999) The hurricane landfall workshop summary. Bull Amer Meteor Soc 80:683–685Google Scholar
  13. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J Atmos Sci 43:585–604CrossRefGoogle Scholar
  14. Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45:1143–1155CrossRefGoogle Scholar
  15. Emanuel KA, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858Google Scholar
  16. Errico RM, Bauer P, Mahfouf JF (2007) Issues regarding the assimilation of cloud and precipitation data. J Atmos Sci 64:3785–3798CrossRefGoogle Scholar
  17. Frank WM, Ritchie EA (1999) Effects of environmental flow upon tropical cyclone structure. Mon Wea Rev 127:2044–2061CrossRefGoogle Scholar
  18. Frank WM, Ritchie EA (2001) Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon Wea Rev 129:2249–2269CrossRefGoogle Scholar
  19. Franklin JL, DeMaria M (1992) The impact of omega dropwindsonde observations on barotropic hurricane track forecasts. Mon Wea Rev 120:381–391CrossRefGoogle Scholar
  20. Franklin JL, Lord SJ, Feuer SE, Marks FD (1993) The kinematic structure of hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon Wea Rev 121:2433–2451CrossRefGoogle Scholar
  21. Hou AY, Ledvina DV, Da Silva AM, Zhang SQ, Joiner J, Atlas RM (2000) Assimilation of SSM/I-derived surface rainfall and total precipitatble water for improving the GEOS analysis and climate studies. Mon Wea Rev 128: 509–537CrossRefGoogle Scholar
  22. Hou AY, Zhang SQ, Reale O (2004) Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts. Mon Wea Rev 132: 2094–2109CrossRefGoogle Scholar
  23. Houze RA, Chen SS, Lee WC, Rogers RF, Moore JA, Stossmeister GJ, Bell MM, Ceterone J, Zhao W, Brodzik SR (2006) The Hurricane Rainband and intensity change experiment: observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull Amer Meteor Soc 87:1503–1521CrossRefGoogle Scholar
  24. Iwasaki T, Nakano H, Sugi M (1987) The performance of a typhoon track prediction model with cumulus parameterization. J Meteor Soc Japan 65:555–570Google Scholar
  25. Jones SC (2000) The evolution of vortices in vertical shear. Part III: Baroclinic vortices. Quart J Roy Meteor Soc 126: 3161–3185CrossRefGoogle Scholar
  26. Krishnamurti TN, Xue J, Bedi HS, Ingles K, Oosterhof D (1991) Physical initialization for numerical weather prediction over the tropics. Tellus 43:53–81Google Scholar
  27. Kurihara Y, Bender MA, Ross RJ (1993) An initialization scheme of hurricane models by vortex specification. Mon Wea Rev 121: 2030–2045CrossRefGoogle Scholar
  28. Kummerrow C (1993) On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J Geophys Res 98: 2757–2765CrossRefGoogle Scholar
  29. Kummerrow C, Hong Y, Olson WS, Yang S, Adler RF, McCollum J, Ferraro R, Petty G, Shin DB, Wilheit TT (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J App Meteor 40:1801–1821CrossRefGoogle Scholar
  30. Leslie LM, Holland GJ (1995) On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor Atmos Phys 56:101–110CrossRefGoogle Scholar
  31. Leslie LM, LeMarshall JF, Morison RP, Spinoso C, Purser RJ, Pescod N, Seecamp R (1998) Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon Wea Rev 126:1248–1258CrossRefGoogle Scholar
  32. Liu Q, Weng F (2002) A microwave polarimetric two-stream radiative transfer model. J Atmos Sci 59: 2396–2402CrossRefGoogle Scholar
  33. Mathur MB (1991) The National Meteorological Center’s quasi- lagrangian model for hurricane prediction. Mon Wea Rev 119:1419–1447CrossRefGoogle Scholar
  34. McAdie CJ, Lawrence MB (2000) Improvement in tropical cyclone track forecasting in the Atlantic basin, 1970–98. Bull Amer Meteor Soc 81:989–997.CrossRefGoogle Scholar
  35. McFarquhar GM, Zhang H, Heymsfield G, Hood R, Dudhia J, Halverson JB, Marks F (2006) Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J Atmos Sci 63:127–150CrossRefGoogle Scholar
  36. Meng Z, Chen L, Xu X (2002) Recent progress on tropical cyclone research in China. Adv Atmos Sci 19: 103–110CrossRefGoogle Scholar
  37. Merrill RT (1988) Environmental influences on hurricane intensification. J Atmos Sci 45:1678–1687CrossRefGoogle Scholar
  38. Molinari J, Vollaro D (1989) External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J Atmos Sci 46:1093–1105CrossRefGoogle Scholar
  39. Molinari J, Vollaro D (1990) External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J Atmos Sci 47:1902–1918CrossRefGoogle Scholar
  40. Molinari J, Vollaro D (1995) External influences on hurricane intensity. Part III: Potential vorticity structure. J Atmos Sci 52:3593–3606CrossRefGoogle Scholar
  41. Paterson LA, Hanstrum BN, Davidson NE, Weber HC (2005) Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon Wea Rev 133:3644–3660CrossRefGoogle Scholar
  42. Pu Z, Braun SA (2001) Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon Wea Rev 129:2023–2039CrossRefGoogle Scholar
  43. Pu Z, Tao WK, Braun SA, Simpson J, Jia Y, Halverson J, Hou A, Olson W (2002) The impact of TRMM data on mesoscale numerical simulation of supertyphoon Paka. Mon Wea Rev 130:2248–2258CrossRefGoogle Scholar
  44. Pu Z, Tao WK (2004) Mesoscale assimilation of TMI data with 4DVAR: Sensitivity study. J Meteor Soc Japan 82:1389–1397CrossRefGoogle Scholar
  45. Pu Z, Li X, Velden C, Aberson S, Liu WT (2008) Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during TCSP. Wea Forecast 23:62–79CrossRefGoogle Scholar
  46. Rogers R, Chen S, Tenerelli J, Willoughby H (2003) A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon Wea Rev 131:1577–1599CrossRefGoogle Scholar
  47. Rogers R, Aberson S, Black M, Black P, Cione J, Dodge P, Dunion J, Gamache J, Kaplan J, Powell M, Shay N, Surgi N, Uhlhorn E (2006) The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull Amer Meteor Soc 87:1523–1537CrossRefGoogle Scholar
  48. Soden BJ, Velden CS, Tuleya RE (2001) The impact of satellite winds on experimental GFDL hurricane model forecasts. Mon Wea Rev 129:835–852CrossRefGoogle Scholar
  49. Spencer RW, Goodman HM, Hood RE (1989) Precipitation retrieval over Land and Ocean with the SSM/I: Identification and characteristics of the scattering signal. J Atmos Ocean Tech 6:254–273CrossRefGoogle Scholar
  50. Tibbetts RT, Krishnamurti TN (2000) An intercomparison of hurricane forecasts using SSM/I and TRMM rain rate algorithm(s). Meteo Atmos Phys 74:37–49CrossRefGoogle Scholar
  51. Trinh VT, Krishnamuti TN (1992) Vortex initialization for typhoon track prediction. Meteor Atmos Phys 47:117–126CrossRefGoogle Scholar
  52. Velden CS, Hayden CM, Franklin JL, Lynch JS (1992) The impact of satellite-derived winds on numerical hurricane track forecasting. Wea Forecast 7:107–118CrossRefGoogle Scholar
  53. Velden CS, Olander TL, Wanzong S (1998) The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part 1: Dataset methodology, description and case analysis. Mon Wea Rev 126: 1202–1218CrossRefGoogle Scholar
  54. Weng F (2007) Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci 64: 3799–3807CrossRefGoogle Scholar
  55. Weng F, Zhu T, Yan B (2007) Satellite data assimilation in numerical weather prediction models. Part II: Uses of rain-affected radiances from microwave observations for hurricane vortex analysis. J Atmos Sci 64: 3910–3925CrossRefGoogle Scholar
  56. Wu CC, Kuo YH (1999) Typhoons affecting Taiwan: Current understanding and future challenges. Bull Amer Meteor Soc 80: 67–80CrossRefGoogle Scholar
  57. Wu CC, Chou KH, Lin PH, Aberson S, Peng, MS, Nakazawa T (2007) The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea Forecast 22:1157–1176Google Scholar
  58. Wu L, Braun SA, Qu JJ, Hao X (2006) Simulating the formation of Hurricane Isabel (2003) with AIRS data. Geophys Res Lett 33:L04804CrossRefGoogle Scholar
  59. Zhang H, Xue J, Zhu G, Zhuang S, Wu X, Zhang F (2004) Application of direct assimilation of ATOVS microwave radiances to typhoon track prediction. Adv Atmos Sci 21:283–290CrossRefGoogle Scholar
  60. Zhang X, Xiao Q, Fitzpatrick PJ (2007) The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon Wea Rev 135: 526–548CrossRefGoogle Scholar
  61. Zhu T, Zhang DL, Weng F (2002) Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon Wea Rev 130:2416–2432CrossRefGoogle Scholar
  62. Zhu T, Zhang DL (2006) Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J Atmos Sci 63: 109–126CrossRefGoogle Scholar
  63. Zou X, Xiao Q (2000) Studies on the Initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J Atmos Sci 57: 836–860CrossRefGoogle Scholar
  64. Zou X, Xiao Q, Lipton AE, Modica GD (2001) A numerical study of the effect of GOES sounder cloud-cleared brightness temperatures on the prediction on Hurricane Felix. J Appl Meteor 40: 34–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zhaoxia Pu
    • 1
  1. 1.Department of MeteorologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations