Skip to main content

In this chapter, we examine similarities and differences of the two information measures used in the current state-of-the-art data assimilation methods, the Degrees of Freedom (DOF) for signal and the E dimension. We evaluate these measures using simple arbitrary examples and a realistic ensemble data assimilation algorithm, including a complex atmospheric model and real observations.

The results indicate that the E dimension is more sensitive to the model dynamics and less sensitive to the amount and quality of the observations, while the opposite is true for the DOF for signal. These differences have to be taken into account when comparing the results of different data assimilation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov R, Majda A, Kleeman R (2005) Information theory and predictability for low-frequency variability. J Atmos Sci 62, 65–87

    Google Scholar 

  • Anderson JL (2001) An ensemble adjustment filter for data assimilation. Mon Wea Rev 129, 2884–2903

    Google Scholar 

  • Bishop CH, Etherton BJ, Majumjar S (2001) Adaptive sampling with the ensemble transform Kalman filter. Part 1: Theoretical aspects. Mon Wea Rev 129, 420–436

    Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Climate 12, 1990–2009

    Google Scholar 

  • DelSole T (2004) Predictability and information theory. Part I: Measures of predictability. J Atmos Sci 61, 2425–2440

    Google Scholar 

  • Engelen RJ, Stephens GL (2004) Information content of infrared satellite sounding measurements with respect to CO2. J Appl Meteor 43, 373–378

    Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99, (C5), 10143–10162

    Google Scholar 

  • Fisher M (2003) Estimation of entropy reduction and degrees of freedom for signal for large variational analysis systems. ECMWF Tech. Memo. No. 397. 18pp

    Google Scholar 

  • Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Wea Rev 126, 796–811

    Google Scholar 

  • Johnson C (2003) Information content of observations in variational data assimilation. Ph.D. thesis, Department of Meteorology, University of Reading, 218 pp. [Available from University of Reading, Whiteknights, P.O. Box 220, Reading, RG6 2AX, United Kingdom.]

    Google Scholar 

  • Kleeman R (2002) Measuring dynamical prediction utility using relative entropy. J Atmos Sci 59, 2057–2072

    Google Scholar 

  • L’Ecuyer TS, Gabriel P, Leesman K, Cooper SJ, Stephens GL (2006) Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part I: Liquid clouds. J Appl Meteor Climat 45, 20–41

    Google Scholar 

  • Oczkowski M, Szunyogh I, Patil DJ (2005) Mechanism for the development of locally low-dimensional atmospheric dynamics. J Atmos Sci 62, 1135–1156

    Google Scholar 

  • Ott, E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E, Patil DJ, Yorke JA (2004) A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 273–277

    Google Scholar 

  • Patil DJ, Hunt BR, Kalnay E, Yorke JA, Ott E (2001) Local low dimensionality of atmospheric dynamics. Phys Rev Lett 86, 5878–5881

    Google Scholar 

  • Purser RJ, Huang H-L (1993) Estimating effective data density in a satellite retrieval or an objective analysis. J Appl Meteorol 32, 1092–1107

    Google Scholar 

  • Rabier F, Fourrie N, Djalil C, Prunet P (2002) Channel selection methods for infrared atmospheric sounding interferometer radiances. Quart J Roy Meteor Soc 128, 1011–1027

    Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding: Theory and practice. World Scientific, Singapore, 238 pp

    Google Scholar 

  • Roulston M, Smith L (2002) Evaluating probabilistic forecasts using information theory. Mon Wea Rev 130, 1653–1660

    Google Scholar 

  • Schneider T, Griffies S (1999) A conceptual framework for predictability studies. J Climate 12, 3133–3155

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign, 144 pp

    Google Scholar 

  • Szunyogh I, Kostelich EJ, Gyarmati G, Patil DJ, Hunt BR, Kalnay E, Ott E, Yorke JA (2005) Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model. Tellus, 57A, 528–545

    Google Scholar 

  • Uzunoglu B, Fletcher SJ, Zupanski M, Navon IM (2007) Adaptive ensemble member size reduction and inflation. Quart J Roy Meteor Soc 133, 1281–1294

    Google Scholar 

  • Wahba G (1985) Design criteria and eigensequence plots for satellite-computed tomography. J Atmos Oceanic Technol 2, 125–132

    Google Scholar 

  • Wahba G, Johnson DR, Gao F, Gong J (1995) Adaptive tuning of numerical weather prediction models: Randomized GCV in three- and four-dimensional data assimilation. Mon Wea Rev 123, 3358–3370

    Google Scholar 

  • Wei M, Toth Z, Wobus R, Zhu Y, Bishop CH, Wang X (2006) Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus 58A, 28–44

    Google Scholar 

  • Zupanski M (2005) Maximum likelihood ensemble filter: Theoretical aspects. Mon Wea Rev 133, 1710–1726

    Google Scholar 

  • Zupanski D, Zupanski M (2006) Model error estimation employing an ensemble data assimilation approach. Mon Wea Rev 134, 1337–1354

    Google Scholar 

  • Zupanski D, Hou AY, Zhang SQ, Zupanski M, Kummerow CD, Cheung SH (2007) Applications of information theory in ensemble data assimilation. Quart J Roy Meteor Soc 133, 1533–1545

    Google Scholar 

  • Zupanski M, Navon IM, Zupanski D (2008) The maximum likelihood ensemble filter as a non-differentiable minimization algorithm. Quart J Roy Meteor Soc 134, 1039–1050.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zupanski, D. (2009). Information Measures in Ensemble Data Assimilation. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71056-1_4

Download citation

Publish with us

Policies and ethics