Assimilation of a Satellite-Based SoilMoisture Product into a Two-Layer Water Balance Model for a Global Crop Production Decision Support System

  • John D. Bolten
  • Wade T. Crow
  • Xiwu Zhan
  • Curt A. Reynolds
  • Thomas J. Jackson


Timely and accurate monitoring of global weather anomalies and drought conditions is essential for assessing global crop conditions. Soil moisture observations are particularly important for crop yield fluctuation forecasts provided by the US Department of Agriculture’s (USDA) International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA) within the Foreign Agricultural Service (FAS). The current system utilized by IPAD estimates soil moisture from a 2-layer water balance model based on precipitation and temperature data from World Meteorological Organization (WMO) and US Air Force Weather Agency (AFWA). The accuracy of this system is highly dependent on the data sources used; particularly the accuracy, consistency, and spatial and temporal coverage of the land and climatic data input into the models. However, many regions of the globe lack observations at the temporal and spatial resolutions required by IPAD. This study incorporates NASA’s soil moisture remote sensing product provided by the EOS Advanced Microwave Scanning Radiometer (AMSR-E) to the U.S. Department of Agriculture Crop Assessment and Data Retrieval (CADRE) decision support system. A quasi-global-scale operational data assimilation system has been designed and implemented to provide CADRE with a daily soil moisture analysis product obtained via the assimilation of AMSR-E surface soil moisture retrievals into the IPAD two-layer soil moisture model. This chapter presents a methodology of data assimilation system design and a brief evaluation of the system performance over the Conterminous United States (CONUS).


Soil Moisture Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Surface Soil Moisture Soil Moisture Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen RG, Pereira LS, Raes D, and Smith M (1998) Crop evapotranspiration; guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56Google Scholar
  2. Bolten JD, Lakshmi V, Njoku EG (2003) Soil moisture retrieval using the passive/active L- and S-band radar/radiometer. IEEE Trans Geosc Rem Sens 41: {2792–2801}CrossRefGoogle Scholar
  3. Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the Ensemble Kalman filter. Mon Wea Rev 126: {1719–1724}CrossRefGoogle Scholar
  4. Brubaker KL, Entekhabi D (1996) Analysis of feedback mechanisms in land-atmosphere interaction. Water Res Res 325: {1343–1357}CrossRefGoogle Scholar
  5. Cochrane MA (1981) Soil moisture and Agromet models. Technical Report, USAF Air Weather Service (MAC), USAFETAC, Scott AFB, Illinois, TN-81/001Google Scholar
  6. Crow WT, Van Loon E (2006) The impact of incorrect model error assumptions on the assimilation of remotely sensed surface soil moisture. J Hydr 8(3): {421–431}CrossRefGoogle Scholar
  7. Crow WT, Bolten JD (2007) Estimating precipitation errors using space borne remote sensing retrievals. doi:10.1029/2007GL029450. Geophys Res Lett 34: L08403Google Scholar
  8. Crow WT, Zhan X (2007) Continental scale evaluation of remotely sensed soil moisture retrievals. Geosci Rems Sens Lett 4(3): {451–455}CrossRefGoogle Scholar
  9. Drusch M, Wood EF, Gao H (2005) Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res Lett 32: L15403, doi:10.1029/2005GL023623CrossRefGoogle Scholar
  10. Drusch M (2007) Initializing numerical weather prediction models with satellite derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecast System and the TMI soil moisture data set. J Geophys Res 112(D3): D03102, doi:10.1029/2006JD007478CrossRefGoogle Scholar
  11. Entekhabi D, Njoku E, Houser P, Spencer M, Doiron T, Kim Y, Smith J, Girard R, Belair S, Crow W, Jackson T, Kerr Y, Kimball J, Koster R, McDonald K, O’Neill P, Pultz T, Running S, Shi J, Wood E, van Zyl J (2004) The Hydrosphere State (Hydros) mission concept: An earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans Geosci Rem Sens 42: {2184–2195}CrossRefGoogle Scholar
  12. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Geophys Res 99: {10143–10162}CrossRefGoogle Scholar
  13. FAO (1996) The Digitized Soil Map of the World Including Derived Soil Properties. CD-ROM, Food and Agriculture Organization, RomeGoogle Scholar
  14. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Rem Sens Env 83(1–2): {195–213}CrossRefGoogle Scholar
  15. Hutchinson C, van Leeuwen W, Drake S, Kaupp V, Haithcoat T (2003) Characterization of PECAD’s DSS: A zeroth-order assessment and benchmarking preparation. NASA Goddard Space Flight Center, Greenbelt, MD, NASA/PECAD.
  16. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, and Wolff DB (2007) The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined sensor precipitation estimates at fine scale. J Hydrometeorol 8: {28–55}Google Scholar
  17. Jackson TJ, Schmugge TJ (1991) Vegetation effects on the microwave emission of soils. Rem Sens Env 363: {203–212}CrossRefGoogle Scholar
  18. Kawanishi T, Sezai T, Ito Y, Imaoka K, Takeshima T, Ishido Y, Shibata A, Miura M, Inahata H, Spencer R (2003) The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans Geosci Rem Sens 41: {184–194}CrossRefGoogle Scholar
  19. Kogan FN (1997) Global drought watch from space. Bull Am Meteorol Soc 78: {621–636}CrossRefGoogle Scholar
  20. Mehra RK (1971) On-line identification of linear dynamic systems with applications to Kalman filtering. IEEE Trans Auto Control 16: {12–21}CrossRefGoogle Scholar
  21. Njoku EG, Li L (1999) Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans. Geosci Rem Sens 7(1): {77–93}Google Scholar
  22. Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Rem Sens 41(2): {215–229}CrossRefGoogle Scholar
  23. Njoku EG (2004) AMSR-E/Aqua daily L3 surface soil moisture, interpretive parameters & QC EASE-Grids. Boulder, CO, USA, National Snow and Ice Data Center. Digital media, March to JuneGoogle Scholar
  24. Njoku EG, Chan T, Crosson W, Limaye A (2004) Evaluation of the AMSR-E-E data calibration over land. Ital J Rem Sens 30/31: {19–38}Google Scholar
  25. Palmer WC (1965) Meteorological drought, U.S. Weather Bureau Research Paper 45, pp 58Google Scholar
  26. Reichle RH, Koster RD (2004) Bias reducton in short records of satellite soil moisture. Geophys Res Lett 31: L19501, doi10.1029 /2004GL020938CrossRefGoogle Scholar
  27. Reichle RH, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the Ensemble Kalman Filter. Mon Weat Rev 130: {103–114}CrossRefGoogle Scholar
  28. Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating Soil Water-Holding Capacities by Linking the FAO Soil Map of the World with Global Pedon Databases and Continuous Pedotransfer Functions. Wat Resours Res, December, 36(12): {3653–3662}Google Scholar
  29. Schmugge T (1985) Remote Sensing of Soil Moisture. Hydrological Forcasting. M. G. A. a. T. P. Burt. John Wiley and Sons, New York, 604Google Scholar
  30. Thornthwaite CW (1948) An Approach Toward a Rational Classification of Climate. Geograph Rev 38: {55–94}CrossRefGoogle Scholar
  31. Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT Vegetation NDVI data. Int J Rem Sens 26(20): {4485–4498}CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • John D. Bolten
    • 1
  • Wade T. Crow
  • Xiwu Zhan
  • Curt A. Reynolds
  • Thomas J. Jackson
  1. 1.USDA-ARS Hydrology and Remotes Sensing LabBeltsville

Personalised recommendations