Advertisement

Assimilation of Soil Moisture and Temperature Data into Land Surface Models: A Survey

  • Nasim Alavi
  • Jon S. Warland
  • Aaron A. Berg

Abstract

The surface temperature and moisture conditions at the Earth’s surface have important controls on land-atmosphere fluxes of energy and water. Over the past decade considerable research has advanced the application of data assimilation systems to ensure the correct specification of these quantities in land surface parameterization schemes. This chapter provides an overview of the primary data assimilation techniques that have evolved for the assimilation of surface temperature and soil moisture into land surface models. We conclude with examination of some of the emerging and current issues for data assimilation including overcoming differences between satellite-retrieved and modeled soil moisture, and strategies that examine assimilation issues given the course spatial resolution obtained with current and near-future satellite sensors.

Keywords

Soil Moisture Data Assimilation Land Surface Model International Satellite Cloud Climatology Project Surface Soil Moisture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi N (2008) Data assimilation techniques to improve evapotranspiration estimates. Doctoral Dissertation, University of GuelphGoogle Scholar
  2. Bennett AF (1992) Inverse methods in physical oceanography. Cambridge University Press, {Cambridge}Google Scholar
  3. Bernard R, et al (1981) Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone. Water Resour Res 17(6):{1603–1610}Google Scholar
  4. Bindlish, R, Barros AP (2002) Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR. IEEE Trans Geosci Remote Sens 40:{326–337}CrossRefGoogle Scholar
  5. Boni, G, et al (2001a) Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components. IEEE Trans Geosci Remote Sens, 39:{165–172}CrossRefGoogle Scholar
  6. Boni, G et al (2001b) Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation. Water Resour Res 37:{1713–1722}CrossRefGoogle Scholar
  7. Bosilovich M, et al (2007) Skin temperature analysis and bias correction in a coupled land-atmosphere data assimilation system. J Meteorol Soc Japan 85A:{205–228}CrossRefGoogle Scholar
  8. Caparrini F, et al (2003) Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data. Boundary-Layer Meteorol., 107:{605–633}CrossRefGoogle Scholar
  9. Caparrini F, et al (2004a) Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J Hydrometeorol 5:{145–159}CrossRefGoogle Scholar
  10. Caparrini F, et al (2004b) Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resour Res 40:W12515, doi:10.1029/2004WR003358CrossRefGoogle Scholar
  11. Castelli F, et al (1999) Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resour Res 35:{3115–3125}CrossRefGoogle Scholar
  12. Chauhan NS, et al (2003) Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. Int J Remote Sens 24:{4599–4622}CrossRefGoogle Scholar
  13. Chen F, et al (1996) Modeling of land-surface evaporation by four schemes and comparison with FIFE observations, J Geophys Res 101:{7251–7268}CrossRefGoogle Scholar
  14. Courtier P, et al (1993) Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology, Tellus Ser A 45:{342–357}CrossRefGoogle Scholar
  15. Crow W T, Wood EF (2003) The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97. AdvWater Resour 26:{137–149}.CrossRefGoogle Scholar
  16. Crow WT, Kustas WP (2005) Utility of assimilating surface radiometric temperature observations for evaporative fraction and heat transfer coefficient retrieval. Boundary-Layer Meteorol 115:{105–130}.CrossRefGoogle Scholar
  17. Daley R (1991) Atmospheric data analysis. Cambridge University Press, 460 pp.Google Scholar
  18. Drusch M et al (2005) Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys Res Lett 32:L15403. doi:10.1029/2005GL023623CrossRefGoogle Scholar
  19. Drusch M (2007) Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecast System and the TMI soil moisture data set, J Geophys Res 112:D03102. doi:10.1029/2006JD007478.CrossRefGoogle Scholar
  20. Dunne S, Entekhabi D (2005) An ensemble-based reanalysis approach to land data assimilation. Water Resour Res 41:W02013. doi:10.1029/2004WR003449.CrossRefGoogle Scholar
  21. Dunne S, Entekhabi D (2006) Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resour Res 2:W01407. doi:10.1029/2005WR004334CrossRefGoogle Scholar
  22. Entekhabi D, et al (1994) Solving the inverse problems for soil-moisture and temperature profiles by sequential assimilation of multifrequency remotely-sensed observations. IEEE Trans.Geosci Remote Sens 32 {438–448}CrossRefGoogle Scholar
  23. Epstein ES (1969) Stochastic dynamic prediction. Tellus 21:{739–759}CrossRefGoogle Scholar
  24. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using monte-carlo methods to forecast error statistics. J Geophys Res-Oceans 99:{10143–10162}CrossRefGoogle Scholar
  25. Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynamics, 54:{539–560}CrossRefGoogle Scholar
  26. Famiglietti JS, Wood EF (1994) Application of multiscale water and energy-balance models on a tallgrass prairie. Water Resour Res 30:{3079–3093}CrossRefGoogle Scholar
  27. Galantowicz, et al (1999) Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness. IEEE Trans.Geosci Remote Sens 37:{1860–1870}Google Scholar
  28. Gao HL, et al (2007) Copula-derived observation operators for assimilating TMI and AMSR-E retrieved soil moisture into land surface models. J Hydrometeorol 8:{413–429}CrossRefGoogle Scholar
  29. Gao H, et al (2006) Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J Hydrometeorol 7:{23–38}Google Scholar
  30. Ghil M, Malanotterizzoli P (1991) Data assimilation in meteorology and oceanography. Adv Geophys 33:{141–266}Google Scholar
  31. Houser, et al (1998) Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour Res 34:{3405–3420}Google Scholar
  32. Huang XY, Yang, X (1996) Variational data assimilation with the Lorenz model: High-resolution limited area model (HIRLAM), Tech Rep 26:42 pp., Danish Meteorol. Inst., Copenhagen.Google Scholar
  33. Jackson TJ, et al (1981) Soil-moisture updating and microwave remote-sensing for hydrological simulation. Hydrol Sci Bull.-Bulletin DesSci Hydrologiques, 26:{305–319}Google Scholar
  34. Jazwinski AH, (1970) Stochastic processes and filtering theory. Academic Press, New York, 376 pp.Google Scholar
  35. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans AMSE, Ser. D, J. Basic Eng 82:{35–45}.Google Scholar
  36. Kim GA, Barros P (2002) Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sens Envir 83:{400–413}CrossRefGoogle Scholar
  37. Koster RD, et al (2000) A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J Geophys Res- Atmos 105:{24809–24822}CrossRefGoogle Scholar
  38. Koster RD, Milly PCD (1997) The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J Clim 10:{1578–1591}CrossRefGoogle Scholar
  39. Kustas WP, et al, (1996) Single- and dual-source modeling of surface energy fluxes with radiometric surface temperature. J. Appl Meteorol 35:{110–121}CrossRefGoogle Scholar
  40. Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour Res 43:W07401. doi:10.1029/2006WR005756CrossRefGoogle Scholar
  41. Lorenc A (1986) Analysis methods for numerical weather prediction. Quart J Royal Meteorol Soc 112:{1177–1194}CrossRefGoogle Scholar
  42. Margulis SA, et al (2002) Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour Res 38 1299. doi:10.1029/2001WR001114Google Scholar
  43. Merlin O, et al (2005) A combined modeling and multipectral/multiresolution remote sensing approach for disaggregation of surface soil moisture: Application to SMOS configuration. IEEE Trans Geosci Remote Sens 43:{2036–2050}CrossRefGoogle Scholar
  44. Merlin O, et al (2006a) A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon ’90 data. Remote Sens Envir 101:{379–389}CrossRefGoogle Scholar
  45. Merlin O, et al (2006b) Assimilation of disaggregated microwave soil moisture into a hydrologic model using coarse-scale meteorological data. J Hydrometeorol 7:{1308–1322}CrossRefGoogle Scholar
  46. Pellenq J, et al (2003) A disaggregation scheme for soil moisture based on topography and soil depth. J. Hydrol, 276:{112–127}.CrossRefGoogle Scholar
  47. Radakovich JD, et al (2001) Results from global land-surface data assimilation methods. Proc. AMS 5th Symp. on Integrated Observing Sys. Albuquerque, NM, 14–19 January, {132–134}Google Scholar
  48. Reichle RH, et al (2001a) Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans Geosci Remote Sens 39:{1708–1718}CrossRefGoogle Scholar
  49. Reichle RH, et al (2001b) Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour Res 37:{2353–2364}.CrossRefGoogle Scholar
  50. Reichle RH, et al (2002a) Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weath. Rev 130:{103–114}.CrossRefGoogle Scholar
  51. Reichle RH, et al (2002b) Extended versus ensemble Kalman filtering for land data assimilation. J Hydrometeorol 3:{728–740}.CrossRefGoogle Scholar
  52. Reichle RH, Koster RD (2004) Bias reduction in short records of satellite soil moisture. Geophys Res Lett 31:L19501. doi:10.1029/2004GL020938CrossRefGoogle Scholar
  53. Reichle RH, et al (2004) Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J Hydrometeorol 5:{430–442}.CrossRefGoogle Scholar
  54. Reichle RH, Koster RD (2005) Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys Res Lett 32:L02404. doi:10.1029/2004GL021700CrossRefGoogle Scholar
  55. Reichle RH, et al (2007) Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J Geophys Res-Atmos 112:D09108,. doi:10.1029/2006JD008033CrossRefGoogle Scholar
  56. Sasaki Y (1960) An Objective analysis for determining initial conditions for the primitive equations. Tech Rep 208. Department of oceanography and Meteorology, A & M College of Texas.Google Scholar
  57. Sun NZ (1994) Inverse problems in Groundwater modeling. Kluwer Academic, Dordrecht.Google Scholar
  58. Walker JP, Houser PR (2001) A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J Geophys Res-Atmos 106:{11761–11774}.CrossRefGoogle Scholar
  59. Walker JP, et al (2001a) One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. J Hydrometeorol 2:{356–373}.CrossRefGoogle Scholar
  60. Walker JP, et al (2001b) One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms. Adv Water Resour 24:{631–650}CrossRefGoogle Scholar
  61. Walker JP, et al (2002) Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application. Water Resour Res 38:1301. doi:10.1029/2002WR001545CrossRefGoogle Scholar
  62. Walker JP, Houser PR (2004) Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv Water Resour 27:{785–801}CrossRefGoogle Scholar
  63. Walker JP, Houser PR (2005) Hydrologic data assimilation. In: Advances in Water Science Methodologies, edited by A. Aswathanarayana, 230pp. The Netherlands: A.A. Balkema.Google Scholar
  64. Wilker H, et al (2006) Effects of the near-surface soil moisture profile on the assimilation of L-band microwave brightness temperature. J Hydrometeorol 7:{433–442}.CrossRefGoogle Scholar
  65. Zhan X, et al (2006) A Method for Retrieving High-Resolution Surface Soil Moisture From Hydros L-Band Radiometer and Radar Observations. IEEE Trans Geosci Remote Sens 44:{1564–1544}.Google Scholar
  66. Zhou YH, et al (2006) Assessing the performance of the ensemble Kalman filter for land surface data assimilation. Monthly Weather Rev 134:{2128–2142}CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nasim Alavi
    • 1
  • Jon S. Warland
  • Aaron A. Berg
  1. 1.Land Resource ScienceUniversity of GuelphGuelphCanada N1G 2W1

Personalised recommendations