Advertisement

Data Assimilation in Hydrology: Variational Approach

  • François-Xavier Le Dimet
  • William Castaings
  • Pierre Ngnepieba
  • Baxter Vieux

Abstract

Predicting the evolution of the components of the water cycle is an important issue both from the scientific and social points of view. The basic problem is to gather all the available information in order to be able to retrieve at best the state of the water cycle. Among some others methods variational methods have a strong potential to achieve this goal. In this paper we will present applications of variational methods to basic problems in hydrology: retrieving the hydrologic state of at a location optimizing the parametrization of hydrologic models and doing sensitivity analysis. The examples will come from surface water as well as underground water. Perspectives of the application of variational methods are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Belanger E, Vincent A (2005) Data assimilation (4D-VAR) to forecast flood in shallow-waters with sediment erosion. J Hydrol 300(1–4), 114–125CrossRefGoogle Scholar
  2. Beven K, Musy A, Higy C (2001) Tribune Libre : L’unicité de lieu, d’action et de temps. Revue des Sciences de l’eau 14(4), 525–533.Google Scholar
  3. Bouyssel F, Cassé V, Pailleux J (1999) Variational surface analysis from screen level atmospheric parameters. Tellus Ser A 51, 453–468CrossRefGoogle Scholar
  4. Cacuci D (1981a) Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. J Math Phys 22(12), 2794–2802.CrossRefGoogle Scholar
  5. Cacuci D (1981b) Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses. J Math Phys 22(12), 2803–2812CrossRefGoogle Scholar
  6. Callies U, Rhodin A, Eppel DP (1998) A case study on variational soil moisture analysis from atmospheric observations. J Hydrol 212–213, 95–108.CrossRefGoogle Scholar
  7. Calvet J, Noilhan J, Bessemoulin P (1998) Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J Appl Meteorol 37(4), 371–386CrossRefGoogle Scholar
  8. Carrera J, Neuman S (1986) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability and solution algorithms. Wat Resour Res 2, 211–227CrossRefGoogle Scholar
  9. Castaings W, Dartus D, Le Dimet F, Saulnier G (2007) Sensitivity analysis and parameter estimation for the distributed modeling of infiltration excess overland flow. Hydrol Earth Syst Sci Disc 4(1), 363–405Google Scholar
  10. Castaings W (2007) Analyse de sensibilité et estimation de paramètres pour la modélisation hydrologique : potentiel et limitations des méthodes variationnelles. Ph. D. dissertation defended at Univerité Joseph-Fourire, Grenoble, France, November 2007Google Scholar
  11. Chavent G (1974) Identification of Parameters in Distributed Systems, chapter identification of functional parameter in partial differential equations. Heinemann, 367Google Scholar
  12. Chavent G (1991) On the theory and practice of non-linear least square. Adv Wat Resour, 14(2) 55–63CrossRefGoogle Scholar
  13. Dalcher A, Kalnay E (1987) Error growth and predictability in operational ECMWF forecasts. Tellus 39A, 474–491Google Scholar
  14. Derber JC (1989) A variational continuous assimilation technique. Mon Wea Rev 117, 2427–2436CrossRefGoogle Scholar
  15. Estupina-Borrell V, Dartus D, Ababou R (2006) Flash flooding modelling with Marine hydrological distributed model. Hydrol Earth Syst Sci Disc 3, 3397–3438Google Scholar
  16. Fonteh M, Boukong A, Tankou C (1998) Soil and water management of dry season green Paes pisium sativum, production in the Western highlands of Cameroon. Technical Report, University of DchangGoogle Scholar
  17. Gilbert J-C, Lemaréchal C (1989) Some numerical experiments with variable-storage quasi-newton algorithms. Math Program Ser B (45), 407–435Google Scholar
  18. Hascoët L, Pascual V (2004) Tapenade 2.1 User’s guide. Technical report .RT-0300. INRIAGoogle Scholar
  19. Honnorat M, Monnier J, Lai F-X, Le Dimet F (2006), Variational data assimilation for 2D fluvial hydraulics simulation CMWR XVI-computational methods for water resources. Copenhagen, June 2006Google Scholar
  20. Lauvernet C (2005) Assimilation variationelle des observations de télédétection dans les modèles de fonctionnement de la véegétation: utilization du modèle adjoint en et prise en compte des contraintes spatiales. Ph.D. Thesis. University of GrenobleGoogle Scholar
  21. Le Dimet F-X, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observation. Tellus 38A, 97–110CrossRefGoogle Scholar
  22. Le Dimet F, Navon IM, Daescu DN (2002) Second-order information in data assimilation. Mon Wea Rev 130(3), 629–648CrossRefGoogle Scholar
  23. Le Dimet F-X, Ngnepieba P, Hussaini MY, Furbish D (2004). Errors and uncertainties for geophysical Fluids. Technical Report, SCRI, Florida State University.Google Scholar
  24. Lions J (1968) Optimal control of systems governed by partial differential equations. Springer-Verlag, BerlinGoogle Scholar
  25. Liu DC, Nocedal J (1989) On the limited BFGS method for large scale optimization. Math Program 45, 503–528CrossRefGoogle Scholar
  26. Mahfouf J (1991) Analysis of soil moisture from near-surface parameters: A feasibility study. J Appl Meteorol 30(11), 1534–1547CrossRefGoogle Scholar
  27. Margulis S, Entekhabi D (2001) A coupled land surface-boundary layer model and its adjoint. J Hydrometeorol 2(3), 274–296CrossRefGoogle Scholar
  28. Mazauric C (2003) Assimilation de données pour les modèles d’hydraulique fluviale. Estimation de paramètres, analyse de sensibilité et décomposition de domaine. PhD thesis, University Joseph FourierGoogle Scholar
  29. Ngnepieba P, Le Dimet F-X, Boukong A, Nguetseng G (2002) Inverse problem formulation for parameters determination using the adjoint method. ARIMA (1) 1, 127–157Google Scholar
  30. Piasecki M, Katopodes N (1997) Control of contaminant releases in rivers and estuaries. Part I: Adjoint sensitivity analysis. J Hydraulic Eng, ASCE 123(6), 486–492CrossRefGoogle Scholar
  31. Reichle R, Entekhabi D, McLaughlin D (2001) Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Wat Resour Res 37(9), 2353–2364.CrossRefGoogle Scholar
  32. Richards LA (1931) Capillary conduction of liquids through porous mediums. Phys 1, 318–333CrossRefGoogle Scholar
  33. Sanders B, Katopodes N (2000) Adjoint sensitivity analysis for shallow-water wave control. J Eng Mech 126(9), 909–919CrossRefGoogle Scholar
  34. Sandu A, Daescu D, Carmichael DR (2003) Direct and adjoint sensitivity analysis of chemical kenetics systems with KPP: I -Theory and software tools. Atmos Environ 37, 5083–5096CrossRefGoogle Scholar
  35. Seo D, Koren V, Cajina N (2003) Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting. J Hydrometeorol 4(3), 627–641CrossRefGoogle Scholar
  36. Sirkes Z, Tziperman E (1997) Finite difference of adjoint or adjoint of finite Difference. Monthly Weather Review, 125, 3373–3378CrossRefGoogle Scholar
  37. Sun N, Yeh W (1990) Coupled inverse problems in groundwater modeling 1. Sensitivity and parameter identification. Wat Resour Res 26(10), 2507–2525Google Scholar
  38. Tikhonov AN, Arsenin VY (1977) Solutions of ill-Posed problems, Wiley, New YorkGoogle Scholar
  39. White LW, Vieux BE, Armand D (2002) Surface flow model: Inverse problems and predictions. J Adv Wat Resour 25(3), 317–324CrossRefGoogle Scholar
  40. White L, Vieux B, Armand D, Le Dimet F (2003) Estimation of optimal parameters for a surface hydrology model. Adv Wat Resour 26(3), 337–348CrossRefGoogle Scholar
  41. Wu L (2005) Variational methods applied to plant functional-structural dynamics: parameter identification, control and data assimilation. D. Thesis. University of GrenobleGoogle Scholar
  42. Yang J, LeDimet F (1998) Variational data assimilation in the transport of sediment in river. Sci China, Ser D: Earth Sci 41(5), 483–485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François-Xavier Le Dimet
    • 1
  • William Castaings
  • Pierre Ngnepieba
  • Baxter Vieux
  1. 1.Laboratoire Jean-KuntzmannUniversité de Grenoble and INRIAGrenobleFrance

Personalised recommendations